
P R I N C I PA L  C O M P O N E N T S  A N A LY S I S
A N D  R E C E P T O R  M O D E L S  I N

E N V I R O N M E N TA L  F O R E N S I C S

Glenn W. Johnson, Robert Ehrlich, and William Full

12.1 Introduction 462
12.1.1 Philosophy and Approach: A Case 

for Exploratory Data Analysis 462
12.1.2 Formal Description of the Receptor Modeling

Problem 464
12.1.3 Demonstration Data Sets 465

12.2 Principal Components Analysis 467
12.2.1 PCA Overview 467
12.2.2 Data Transformations 481
12.2.3 Eigenvector Decomposition 485
12.2.4 Determining the Number of Significant Principal

Components 486
12.2.4.1 Single Index Methods 486
12.2.4.2 Variable-by-Variable Goodness of Fit 488

12.2.5 PCA Output 494
12.3 Self-Training Receptor Modeling Methods 497

12.3.1 Polytopic Vector Analysis (PVA) 498
12.3.1.1 Scaling Functions: Back-Calculation to 

Original Metric 500
12.3.1.2 Eigenvector Decomposition and 

Determining the Number of Sources 501
12.3.1.3 Determining End-Member 

Compositions and Mixing Proportions 501
12.3.1.3.1 Selection of Initial Polytope 502
12.3.1.3.2 Testing Matrices A0 and F0

for Negative Values 503
12.3.1.3.3 The DENEG Algorithm 504

12.3.1.4 Results of PVA Applied to Data Set 2 506
12.3.2 Unique Vector Rotation Method 506
12.3.3 SAFER Method 508

12.4 Summary 510
Acknowledgments 511
References 511

C H A P T E R 1 2

chap-12.qxd  6/13/01  8:11 PM  Page 461

Case 4:05-cv-00329-GKF-PJC     Document 2252-3 Filed in USDC ND/OK on 06/19/2009     Page 1 of 56



1 2 . 1 I N T R O D U C T I O N

The identification of chemical contaminant sources is a common problem in
environmental forensic investigations. Successful inference of sources depends
on sampling plan design, sample collection procedures, chemical analysis
methods, and knowledge of historical industrial processes in the study area.
However, in complex situations where multiple sources contribute similar types
of contaminants, even careful project planning and design may not be enough.
If sources cannot be linked to a unique chemical species (i.e., a tracer chemical),
then mapping the distributions of individual contaminant concentrations is
insufficient to infer source. If, however, a source exhibits a characteristic
‘chemical fingerprint’ defined by diagnostic proportions of a large number of
analytes, source inference may be accomplished through analysis of multiple
variables; that is, through use of multivariate statistical methods. The objective
of a multivariate approach to chemical fingerprinting is to determine (1) the
number of fingerprints present in the system, (2) the multivariate chemical
composition of each fingerprint, and (3) the relative contribution of each 
fingerprint in each collected sample.

Development of numerical methods to determine these parameters has
been a major goal in environmental chemometrics and receptor modeling 
for more than 20 years. The result has been development of a series of proce-
dures designed to accomplish this. As we shall see, procedures developed 
early in this history are most useful in solving relatively simple problems. Later
procedures are designed to solve more general problems, which take into
account complications such as bad data, commingled plumes (i.e., mixing of
source fingerprints), and the presence of sources not assumed or anticipated
at the start of an investigation. The objective of this chapter is to discuss 
this family of procedures in terms of their strengths and limitations, and in
order to guide the working environmental scientist in the use of appropriate
procedures.

12.1.1 PHILOSOPHY AND APPROACH: A CASE FOR EXPLORATORY
DATA ANALYSIS

In terms of experimental design, the source apportionment problem in 
environmental forensic investigations falls between two extremes. At one
extreme, all potential sources are known in terms of their chemical composi-
tion, location, history, and duration of activity. At the other extreme, none of
these are known with any certainty. Chemicals at the receptor (e.g., estuary 
sediments, groundwater at a supply well) may be the result of activities long
absent from the vicinity of the site.
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In the first case (a priori knowledge of all sources) the problem is a relatively
simple one. Appropriate sampling locations can be determined using a 
conventional experimental design, which is part of conventional experimental
statistics. Determination of contribution of each source can be extracted using
a variety of linear methods, such as chemical mass balance receptor models
(see Chapter 11 of this volume). However, even when the contributing sources
are known, environmental forensic investigations often prove to be more 
complex than initially anticipated. Chemicals in the environment may not
retain their original composition. That is, chemical compositions may change
over time by processes such as biodegradation and volatilization. This is true
even for relatively recalcitrant contaminants such as polychlorinated biphenyls
and dioxins (Bedard and Quensen, 1995; Chiarenzelli et al., 1997). The result
of degradation will be resolution of one or more fingerprints, not originally
anticipated.

At the other extreme, where nothing is known with certainty, potential
sources may be suspected, but samples of the sources (i.e., fingerprint refer-
ence standards) may not have been collected, and may not exist in the litera-
ture. The industrial history of a region may be imperfectly known. Often, a
small, low profile operation may be a major but completely overlooked source
of contamination. For cases towards this end of the spectrum, we must take
leave of the elegance of conventional experimental statistics, and move into the
realm of exploratory data analysis (EDA). The fundamental difference
between these two approaches (experimental statistics and EDA) is that former
is associated with creation of explicit hypotheses, and evaluation of data in
terms of well-defined tests and strong probabilistic arguments. In contrast, the
objective of EDA is to find patterns, correlations and relationships in the data
itself, with few assumptions or hypotheses (Tukey, 1977). If the fruits of an EDA
result in a map where the concentrations of a multivariate fingerprint increase
monotonically towards an effluent pipe, and the fingerprint composition is
consistent with the process associated with that source, the obvious inference is
that the potential source is the actual source. We recognize that we are not
working in the realm of classical statistics or formal hypothesis testing, and that
EDA is based on less rigorous probabilistic statements. However, such an
approach should not be construed as ‘second best’. In environmental foren-
sics, an EDA approach may be the only valid option. The cost of highly rigor-
ous probabilistic methods is often a set of narrow assumptions regarding the
structure of the data. Such methods cannot be supported if those critical
assumptions cannot be safely assumed. Moreover, in environmental forensic
investigations, we often lack sufficient information to know what hypotheses to
test. Thus, at least at the beginning of a project, an EDA approach is usually
most prudent.
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Regardless of the data analytical strategy chosen, another important consid-
eration is the presence of bad or questionable data. Common problems with
environmental chemical data include the following: (1) chemical analyses per-
formed by different laboratories or by different methods, which may introduce
a systematic bias; (2) the presence of data at concentrations at or below
method detection limits; (3) the presence of coelution (non-target analytes
that elute at the same time as a target analyte; and (4) the ever-present problem
of error in data entry, data transcription, or peak integration.

Unfortunately such errors rarely manifest themselves as random noise. More
often, they contribute strong systematic variability. If unrecognized, the result
may be derivation of ‘fingerprints’ which have little to do with the true sources.
Therefore, a necessary adjunct to any data analysis in environmental forensics
is vigilant identification of outliers. As we proceed with a discussion of finger-
printing methods, a major consideration in that regard must be inclusion of
vigilant outlier identification and data cleaning procedures. If such an effort
results in deletion or modification of data, the data must be clearly identified,
and justification for the action must be provided in the narrative that accom-
panies the analyses.

12.1.2 FORMAL DESCRIPTION OF THE RECEPTOR MODELING PROBLEM

Receptor modeling in environmental forensics involves the inference of
sources and their contributions through analysis of chemical data from the
ambient environment (Gordon, 1988; Hopke, 1991). The objectives are to
determine (1) the number of chemical fingerprints in the system; (2) the
chemical composition of each fingerprint; and (3) the contribution of each
fingerprint in each sample. The starting point is a data-table of chemical mea-
surements in samples collected from the receptor (e.g., estuarine sediments,
ambient air in a residential area). These data are usually provided in spread-
sheet form where rows represent samples and columns represent chemical 
analytes. To the multivariate data analyst this table is a matrix. We will refer to
the original data table as the m row by n column matrix X, where m is the 
number of samples and n is the number of analytes. We wish to know the num-
ber of fingerprints present (k) and chemical composition of each (objectives 1
and 2 above). This can be expressed as a matrix F, which has k rows and n
columns. We also wish to know a third matrix (A), which has m rows and k
columns, and represents the contribution of each fingerprint in each sample
(objective 3 above). Thus the following linear algebraic equation formally
expresses the receptor modeling problem.

Matrix dimensions
(12.1)X A F

( ) ( ) ( )m n m k k n� � �
�
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Given our data table we have three knowns (X, m and n), and three unknowns:
(1) the number of fingerprints (k); (2) the fingerprint compositions (F); and
(3) the contributions of each fingerprint in each sample (A). In the rare case
where fingerprints are known a priori, both k and F are known, and only one
unknown (A) remains. If this is the case, source compositions are contained
within a ‘training data set’ consisting of the compositions of all potential
sources, and solving Equation 12.1 for A is straightforward. The problem can
be solved by regression techniques, which are the basis of chemical 
mass balance (CMB) approaches (see Chapter 11). Unfortunately, in environ-
mental forensics investigations, we seldom have the luxury of a priori knowledge
of contributing sources. The use of a training data set constitutes, if not a 
formal hypothesis test, at least an implicit hypothesis. If at all possible, we
would like to derive source patterns directly from analysis of ambient data.
That is, we want to employ chemometric methods that are ‘self-training’.

While the number of chemometric methods available to us is large, the
nature of environmental forensics investigations dictates the use of methods
with very special features: they must allow for the conceptual model of 
mixtures of multiple sources; and they should allow resolution of contrib-
uting chemical fingerprints without a priori assumption of the number, 
chemical composition or geographic/temporal distribution. Finally, the results
must be interpretable in a scientific context. Several commonly used 
chemometric methods, which satisfy the above considerations will be presented
below.

12.1.3 DEMONSTRATION DATA SETS

The methods demonstrated in this chapter are illustrated using poly-
chlorinated biphenyls (PCB) data. PCBs are a group of chlorinated organic
compounds which are commonly the focus of environmental forensic investig-
ations. PCBs were widely used in commercial and industrial settings for much
of the twentieth century. Commercial PCB products were marketed under the
trade-name Aroclor by Monsanto (the former US manufacturer). Commercial
applications of PCBs included their use in fluorescent light ballasts, carbonless
copy paper, and as dielectric fluids in electrical transformers and capacitors.
PCBs are of concern in environmental studies because they are persistent, toxic
and tend to bioaccumulate in tissues of higher predators (Tanabe et al., 1987).
PCBs are used for demonstrations in this chapter because they are a group of
contaminants that typically require a multivariate approach to data analysis.
Commercial PCB formulations (e.g., Aroclors) have unique chemical compo-
sitions composed of multiple PCB congeners, but no single congener is a 
diagnostic tracer for a specific Aroclor.

P R I N C I PA L  C O M P O N E N T S  A N A L Y S I S  A N D  R E C E P T O R  M O D E L S 465

chap-12.qxd  6/13/01  8:11 PM  Page 465

Case 4:05-cv-00329-GKF-PJC     Document 2252-3 Filed in USDC ND/OK on 06/19/2009     Page 5 of 56



Two synthetic data sets will be used for demonstration purposes. Each of
these data sets represents a three-source system. The congener patterns for the
three-source fingerprints were taken from Aroclor standard compositions
reported by Frame et al. (1996). The source compositions are Aroclor 1248
(Frame sample G3.5) and two variants of Aroclor 1254 (Frame samples A4 and
G4). Frame et al. (1996) first reported markedly different congener patterns
for different lots of Aroclor 1254. Subsequent investigations by Frame 
indicated that the atypical Aroclor 1254 was the result of a late production
change in the Aroclor 1254 manufacturing process that occurred in the early
1970s (Frame, 1999). The congener compositions of these three-source 
fingerprints are shown as bar-graphs on Figure 12.1.

The two variants of Aroclor 1254 were used for this demonstration because
it provides a typical example of the surprises often encountered in environ-
mental forensic investigations. For example, given a situation where (1) the
production history of an area was well established; (2) it was known with great
certainty that only two PCB formulations were ever used at a site: Aroclor 1248
and Aroclor 1254; and (3) the data analyst was not aware of the two Aroclor
1254 variants; he/she might reasonably make an a priori assumption of a 
two-source system. Clearly, in this case, that assumption would be incorrect. In
environmental forensics investigations, even the simplest, well-understood 
systems can yield surprises.

These three Aroclor compositions were used to create two synthetic data
sets. The first of the two (Data Set 1) is quite simple, almost to the point of
being unrealistic as an analogue to environmental forensics investigations.
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Figure 12.1

Congener compositions 
of three PCB product 
formulations (Aroclors)
used to create the 
artificial data sets used
for demonstration in this
chapter (data from Frame
et al., 1996).
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However, it is instructive in that it provides a good intuitive understanding of
principal components analysis (PCA), which is the mathematical basis of all the
methods presented here. Data Set 1 is a 24-sample, 56-congener matrix. The
data are simple in that each sample represents a contribution from one 
and only one source. That is, it is a strongly clustered data set, with no samples
representing mixtures of two or of three Aroclors. To create some inter-sample
variability within each of the three source categories, random Gaussian noise
was added to each sample in the data set. Data Set 1 is shown on Table 12.1.

The second data set (Data Set 2) is considerably more complex, and is more
representative of data encountered in environmental forensics investigations.
Data Set 2 is shown in Table 12.3, and was created such that:

1 All samples are mixtures of the three Aroclor compositions. That is, no sample in the

data set represents a 100% contribution from a single source. Varying contributions

of multiple sources impacts every sample. The two matrices A and F (Equation 12.1)

used to calculate the original noise free matrix are shown in Table 12.2. For ease of

presentation, the transposed 56 � 3 matrix Ft (rather than the original matrix F) is

shown in Table 12.2.

2 Ten percent Gaussian noise was added to simulate random error.

3 The data are represented in units of concentration (ng/g), and a method detection

limit was established for each sample. As such, many low concentration matrix

elements are ‘censored’ as a function of the detection limits. Non-detects are indicated

in Table 12.3 with a ‘U’ qualifier. For subsequent numerical analyses, we adopt the

common practice of replacing non-detect values with half the detection limit.

4 Data transcription errors were added to one sample (Sample 22).

5 For the congener PCB 141, a coelution problem was introduced in 35 of the 50

samples. Coelution of non-PCB peaks with PCB congeners during gas chromatographic

analysis is a common problem in PCB chemistry. The coelution simulated here

represents one such example. The pesticide p,p�-DDT elutes very close to PCB 141 on

a Chrompack CP-SIL5-C18 GC column (R. Wagner, personal communication).

Therefore, if p,p�-DDT is present in a sample undergoing congener specific PCB

analysis, the p,p�-DDT could erroneously be reported as PCB congener IUPAC 141.

1 2 . 2 P R I N C I PA L  C O M P O N E N T S  A N A LY S I S

12.2.1 PCA OVERVIEW

Principal components analysis (PCA) is a widely used method in environmental
chemometrics, as it is in many scientific disciplines. PCA is used on its own, 
and as an intermediate step in receptor modeling methods. Before presenting
the computational steps in PCA, it is useful to provide a more intuitive dis-
cussion, using Data Set 1 as an example. The objective of PCA is to reduce 
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Aroclor 1248 0.76 0.75 2.70 1.16 6.79 4.98 1.05 1.50 1.04 0.74 0.64 1.90 6.34
Aroclor 1248 0.87 1.06 2.61 1.46 5.76 6.11 0.61 2.65 0.89 1.08 0.66 1.80 5.82
Aroclor 1248 0.66 0.99 3.72 1.65 6.46 6.68 0.97 2.64 1.22 0.85 0.63 1.95 5.89
Aroclor 1248 0.66 0.96 3.67 1.72 5.39 5.76 0.93 2.08 0.89 1.02 0.82 1.78 4.77
Aroclor 1248 0.65 1.01 3.95 2.03 6.17 3.78 1.14 2.46 1.05 0.92 0.87 1.85 6.89
Aroclor 1248 0.58 1.18 3.84 1.56 5.05 4.63 0.98 2.26 0.78 1.07 0.88 2.16 5.13
Aroclor 1248 0.70 0.96 3.61 1.30 3.80 5.65 1.07 2.96 1.02 1.07 0.89 1.50 5.93
Aroclor 1248 0.84 1.03 2.72 1.42 4.89 6.62 0.95 2.19 1.20 1.06 0.82 1.99 5.22
Aroclor 1254 0.02 0.02 0.09 0.02 0.06 0.11 0.01 0.06 0.01 0.10 0.02 0.08 0.75
(late production)
Aroclor 1254 0.02 0.03 0.09 0.02 0.07 0.14 0.01 0.07 0.01 0.17 0.02 0.06 0.99
(late production)
Aroclor 1254 0.02 0.02 0.08 0.01 0.07 0.11 0.01 0.05 0.01 0.16 0.02 0.10 0.75
(late production)
Aroclor 1254 0.02 0.02 0.09 0.03 0.07 0.16 0.01 0.05 0.01 0.17 0.03 0.12 0.86
(late production)
Aroclor 1254 0.02 0.02 0.07 0.02 0.08 0.10 0.01 0.04 0.01 0.17 0.02 0.08 0.82
(late production)
Aroclor 1254 0.02 0.03 0.08 0.02 0.10 0.14 0.01 0.06 0.01 0.19 0.02 0.10 0.72
(late production)
Aroclor 1254 0.02 0.02 0.04 0.02 0.07 0.14 0.01 0.04 0.01 0.19 0.03 0.14 0.83
(late production)
Aroclor 1254 0.02 0.02 0.09 0.03 0.06 0.15 0.01 0.05 0.01 0.16 0.02 0.06 0.59
(late production)
Aroclor 1254 0.07 0.10 0.24 0.04 0.20 0.32 0.07 0.20 0.07 0.14 0.01 0.14 2.64
(typical)
Aroclor 1254 0.11 0.09 0.30 0.04 0.21 0.30 0.05 0.18 0.07 0.14 0.01 0.14 1.94
(typical)
Aroclor 1254 0.11 0.08 0.21 0.03 0.14 0.22 0.05 0.16 0.08 0.10 0.01 0.16 2.35
(typical)
Aroclor 1254 0.08 0.09 0.27 0.05 0.22 0.31 0.03 0.11 0.08 0.13 0.01 0.24 2.29
(typical)
Aroclor 1254 0.10 0.09 0.35 0.05 0.16 0.33 0.04 0.15 0.08 0.12 0.01 0.12 2.82
(typical)
Aroclor 1254 0.08 0.07 0.23 0.04 0.17 0.30 0.04 0.20 0.08 0.09 0.01 0.13 3.02
(typical)
Aroclor 1254 0.11 0.08 0.33 0.04 0.13 0.24 0.05 0.17 0.07 0.11 0.01 0.14 2.72
(typical)
Aroclor 1254 0.08 0.08 0.31 0.04 0.19 0.27 0.05 0.21 0.08 0.15 0.01 0.18 3.00
(typical)
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Table 12.1

Data Set 1 (24 samples, 56 congeners) created by addition of Gaussian noise to three Aroclor compositions reported by 
Frame et al. (1996). Units in percent.
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0.83 2.83 1.70 4.28 5.45 0.73 2.27 3.76 3.52 6.81 9.70 2.31 5.66 0.70 0.55
1.08 2.70 1.23 4.30 6.28 0.77 2.88 2.49 3.28 9.21 9.01 2.04 4.60 0.49 0.70
1.19 1.87 1.87 4.35 5.01 0.88 3.50 2.41 3.50 7.20 7.40 2.15 4.43 0.57 0.70
1.09 3.14 1.93 4.50 5.08 1.16 3.73 2.71 3.24 6.84 7.48 2.76 5.41 0.66 0.55
1.21 2.80 1.50 4.37 6.43 0.79 4.03 3.16 3.18 7.54 5.85 2.02 4.68 0.67 0.55
0.97 2.80 1.44 4.52 5.77 1.02 2.84 3.33 3.41 8.81 7.60 2.06 4.84 0.61 0.77
0.82 2.43 1.37 4.57 5.54 1.14 3.81 2.72 4.08 7.71 7.67 2.18 5.17 0.46 0.77
1.10 1.77 1.57 4.25 5.71 0.69 4.27 2.80 3.46 8.06 8.19 1.98 4.29 0.51 0.77
0.02 0.06 0.05 0.26 0.69 0.04 1.62 0.95 0.36 3.58 7.92 0.12 2.08 0.23 1.52

0.03 0.10 0.06 0.29 0.83 0.04 1.37 1.06 0.23 4.36 5.63 0.12 2.11 0.23 1.92

0.02 0.06 0.05 0.27 0.78 0.04 1.42 0.62 0.39 3.98 7.45 0.10 2.68 0.23 1.74

0.02 0.09 0.06 0.29 0.93 0.04 2.13 0.96 0.40 3.83 5.65 0.08 2.08 0.24 1.45

0.02 0.07 0.06 0.28 0.96 0.05 1.81 1.18 0.37 4.71 8.06 0.11 2.54 0.21 1.53

0.02 0.07 0.06 0.29 0.85 0.04 2.42 0.96 0.38 3.50 8.58 0.09 2.16 0.26 1.59

0.02 0.08 0.04 0.29 0.83 0.06 1.59 1.12 0.33 3.90 7.38 0.13 1.97 0.23 1.98

0.02 0.08 0.06 0.29 0.74 0.03 1.77 1.06 0.45 3.70 9.32 0.12 2.47 0.16 1.90

0.06 0.16 0.10 1.18 4.12 0.15 0.57 0.19 0.49 1.16 3.69 0.16 0.97 0.04 1.22

0.05 0.17 0.18 1.27 5.64 0.15 0.58 0.17 0.88 1.25 4.16 0.13 0.66 0.04 1.28

0.04 0.15 0.13 1.11 7.11 0.11 0.54 0.18 0.67 0.78 3.69 0.17 0.79 0.02 1.33

0.07 0.15 0.16 1.18 5.13 0.15 0.57 0.20 0.65 0.91 3.60 0.19 0.88 0.03 1.48

0.05 0.12 0.15 1.16 5.71 0.10 0.69 0.23 0.54 1.06 4.37 0.17 0.86 0.03 1.05

0.06 0.12 0.08 1.16 5.70 0.11 0.62 0.24 0.53 1.30 3.15 0.18 1.17 0.03 0.84

0.06 0.15 0.15 1.23 6.77 0.14 0.51 0.20 0.63 0.89 2.96 0.18 0.83 0.03 1.54

0.05 0.16 0.11 1.21 4.39 0.10 0.62 0.16 0.74 1.20 3.38 0.15 0.99 0.03 1.31
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Aroclor 1248 0.97 1.05 0.67 0.28 1.55 1.01 1.71 2.07 1.59 3.00 2.41 0.09 0.01
Aroclor 1248 0.98 1.17 0.95 0.25 1.36 1.12 2.00 2.26 1.44 1.87 1.94 0.08 0.01
Aroclor 1248 0.89 0.89 1.14 0.27 1.72 0.98 1.67 2.34 1.48 2.60 2.50 0.08 0.01
Aroclor 1248 1.00 1.15 1.13 0.21 1.57 1.20 1.96 2.43 1.57 2.65 2.00 0.06 0.01
Aroclor 1248 1.04 1.25 1.34 0.28 1.56 1.00 1.79 1.87 1.35 2.82 2.02 0.09 0.01
Aroclor 1248 1.05 1.10 1.43 0.23 1.38 1.10 1.93 1.44 1.77 2.51 3.01 0.09 0.01
Aroclor 1248 0.97 1.29 0.75 0.29 1.78 1.23 2.28 1.73 1.07 2.32 2.98 0.08 0.01
Aroclor 1248 0.80 1.27 1.48 0.23 1.75 0.94 1.88 1.75 1.36 3.14 2.68 0.08 0.01
Aroclor 1254 1.83 2.27 3.60 0.63 1.99 2.78 4.81 6.55 8.02 11.26 14.48 1.39 0.50
(late production)
Aroclor 1254 2.02 2.50 3.03 0.62 2.02 2.39 5.32 6.78 9.52 8.60 13.85 2.09 0.64
(late production)
Aroclor 1254 1.67 2.66 3.82 0.62 1.59 2.89 4.53 6.59 7.18 9.10 17.61 1.94 0.34
(late production)
Aroclor 1254 1.72 2.69 3.92 0.64 2.18 2.78 4.30 7.52 5.89 7.90 14.42 2.56 0.65
(late production)
Aroclor 1254 1.47 2.22 2.85 0.64 1.92 3.80 3.68 4.33 7.12 10.01 14.88 2.14 0.50
(late production)
Aroclor 1254 1.98 2.74 3.90 0.45 1.80 2.38 5.50 6.91 6.24 9.93 10.95 2.09 0.52
(late production)
Aroclor 1254 1.95 2.31 4.00 0.48 2.02 2.44 5.43 4.85 7.26 7.78 16.30 1.99 0.55
(late production)
Aroclor 1254 1.39 3.04 3.03 0.57 1.55 3.43 5.26 5.67 7.24 10.00 11.55 2.09 0.60
(late production)
Aroclor 1254 1.98 1.71 4.30 1.27 7.23 2.34 3.34 4.98 3.28 10.74 9.63 1.70 0.66
(typical)
Aroclor 1254 2.15 1.33 4.78 1.75 5.74 3.00 4.40 7.80 3.21 9.91 8.14 1.59 0.51
(typical)
Aroclor 1254 2.74 1.36 4.17 0.88 7.27 3.16 3.51 7.94 2.59 10.14 10.10 1.22 0.48
(typical)
Aroclor 1254 2.99 1.23 4.74 1.19 6.53 3.10 3.42 7.67 2.70 10.28 7.99 1.67 0.69
(typical)
Aroclor 1254 2.22 1.49 3.93 1.17 6.10 2.45 2.64 9.72 3.65 9.61 10.14 1.46 0.75
(typical)
Aroclor 1254 1.82 1.89 3.96 1.41 7.39 2.75 3.81 7.08 3.54 12.26 7.92 1.48 0.62
(typical)
Aroclor 1254 2.91 1.77 4.63 1.02 6.99 2.03 3.25 8.63 2.65 9.86 8.89 1.98 0.68
(typical)
Aroclor 1254 2.02 1.66 4.23 1.02 6.43 2.48 3.54 7.81 3.62 12.39 6.52 1.95 0.58
(typical)
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Continued
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0.13 0.05 0.06 0.02 0.42 0.09 0.05 0.33 0.08 0.43 0.05 0.04 0.09 0.06 0.24
0.16 0.04 0.05 0.01 0.46 0.09 0.05 0.39 0.08 0.39 0.04 0.04 0.11 0.07 0.17
0.13 0.05 0.06 0.02 0.34 0.10 0.05 0.40 0.08 0.36 0.05 0.04 0.10 0.10 0.21
0.13 0.05 0.05 0.02 0.55 0.10 0.05 0.36 0.10 0.44 0.05 0.04 0.08 0.09 0.25
0.14 0.04 0.07 0.02 0.44 0.10 0.05 0.27 0.07 0.36 0.04 0.04 0.11 0.10 0.19
0.17 0.04 0.05 0.03 0.38 0.08 0.04 0.26 0.06 0.45 0.02 0.04 0.07 0.06 0.29
0.16 0.04 0.06 0.02 0.40 0.11 0.06 0.34 0.08 0.49 0.04 0.05 0.08 0.10 0.29
0.13 0.05 0.06 0.02 0.46 0.11 0.05 0.30 0.10 0.49 0.03 0.04 0.09 0.09 0.23
1.10 0.31 0.19 0.60 6.32 0.59 0.52 1.93 0.26 3.24 1.30 1.25 0.81 0.33 0.30

1.72 0.35 0.28 0.53 7.08 0.78 0.49 2.31 0.29 2.65 0.93 1.36 0.78 0.46 0.53

1.36 0.28 0.29 0.61 5.92 0.64 0.46 1.90 0.31 3.11 0.84 0.91 0.84 0.31 0.43

2.09 0.39 0.32 0.63 7.98 0.74 0.43 2.40 0.26 4.00 1.20 0.93 0.70 0.53 0.38

1.57 0.20 0.26 0.51 6.74 0.74 0.56 2.04 0.22 3.95 1.04 1.35 0.95 0.38 0.48

1.72 0.25 0.23 0.76 6.08 0.58 0.46 2.21 0.26 4.99 1.35 1.31 0.80 0.39 0.47

2.02 0.34 0.30 0.68 6.48 0.63 0.52 1.83 0.21 4.25 1.10 0.94 0.88 0.37 0.55

2.07 0.24 0.30 0.61 6.35 0.63 0.64 2.07 0.28 4.02 1.19 0.94 0.90 0.46 0.42

2.87 0.59 0.69 0.34 6.85 1.22 0.56 4.79 0.81 5.44 1.00 0.87 1.11 0.55 0.67

3.12 0.64 0.96 0.47 5.83 1.35 0.69 3.55 0.87 3.37 0.90 0.88 1.38 0.65 0.84

1.75 0.66 0.79 0.37 6.29 1.16 0.77 3.46 0.76 3.98 1.06 0.91 0.86 0.42 0.65

2.35 0.69 0.74 0.46 7.57 1.30 0.67 3.65 0.82 4.08 0.90 0.64 1.27 0.63 0.77

2.20 0.63 0.78 0.44 6.10 0.92 0.47 3.24 0.75 4.42 0.62 0.96 1.21 0.40 0.79

2.84 0.65 0.85 0.40 4.56 1.17 0.81 3.11 0.64 4.91 1.08 0.96 1.20 0.45 0.68

2.39 0.61 0.61 0.50 5.50 0.80 0.68 3.26 0.62 4.82 0.82 0.76 1.36 0.62 0.89

2.54 0.61 0.72 0.48 6.33 1.22 0.59 4.43 0.75 4.20 0.91 1.23 1.14 0.66 0.72
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Sample 1 03 43 54 01 PCB 16 0.75 00.02 0.10
Sample 2 22 26 51 02 PCB 17 0.98 00.02 0.09
Sample 3 59 13 28 03 PCB 18 3.46 00.09 0.27
Sample 4 71 11 18 04 PCB 22 1.45 00.02 0.04
Sample 5 03 38 59 05 PCB 28 5.86 00.06 0.21
Sample 6 59 24 17 06 PCB 31 5.76 00.12 0.30
Sample 7 45 07 48 07 PCB 32 0.98 00.01 0.05
Sample 8 41 02 57 08 PCB 33 2.33 00.05 0.17
Sample 9 19 37 44 09 PCB 37 1.00 00.01 0.08
Sample 10 60 35 05 10 PCB 40 0.97 00.16 0.13
Sample 11 20 74 05 11 PCB 41 0.79 00.02 0.01
Sample 12 55 12 33 12 PCB 42 1.88 00.10 0.16
Sample 13 48 08 44 13 PCB 44 5.36 00.72 2.50
Sample 14 17 72 11 14 PCB 45 0.96 00.02 0.05
Sample 15 44 13 43 15 PCB 47 2.54 00.08 0.15
Sample 16 44 36 20 16 PCB 48 1.62 00.05 0.13
Sample 17 48 50 02 17 PCB 49 4.39 00.28 1.19
Sample 18 15 57 29 18 PCB 52 5.87 00.89 5.81
Sample 19 47 47 07 19 PCB 53 0.93 00.04 0.13
Sample 20 14 01 85 20 PCB 56 3.36 01.83 0.59
Sample 21 40 08 52 21 PCB 60 2.81 01.02 0.19
Sample 22 46 45 10 22 PCB 64 3.50 00.39 0.64
Sample 23 50 22 28 23 PCB 66 7.60 03.84 1.09
Sample 24 49 45 06 24 PCB 70 7.78 07.36 3.77
Sample 25 63 27 10 25 PCB 71 1.96 00.12 0.16
Sample 26 03 67 30 26 PCB 74 4.92 02.36 0.91
Sample 27 24 26 50 27 PCB 77 0.55 00.22 0.03
Sample 28 57 07 36 28 PCB 82 0.65 01.65 1.20
Sample 29 24 12 65 29 PCB 84 0.96 01.70 2.51
Sample 30 67 06 27 30 PCB 85 1.20 02.68 1.38
Sample 31 50 21 29 31 PCB 87 1.17 03.68 4.31
Sample 32 07 79 13 32 PCB 92 0.26 00.61 1.39
Sample 33 07 46 47 33 PCB 95 1.51 01.98 6.75
Sample 34 03 79 18 34 PCB 97 1.02 03.00 2.83
Sample 35 18 38 44 35 PCB 99 1.91 04.88 3.26
Sample 36 38 28 34 36 PCB101 1.99 05.92 8.67
Sample 37 34 30 36 37 PCB105 1.53 07.95 3.23
Sample 38 51 20 29 38 PCB110 2.68 09.08 10.04
Sample 39 43 52 06 39 PCB118 2.47 14.65 7.94
Sample 40 38 00 62 40 PCB128 0.08 01.84 1.53
Sample 41 07 28 65 41 PCB130 0.01 00.54 0.65
Sample 42 16 04 80 42 PCB132 0.15 01.62 2.47
Sample 43 29 50 22 43 PCB135 0.04 00.30 0.66
Sample 44 21 51 28 44 PCB136 0.06 00.26 0.76
Sample 45 56 43 01 45 PCB137 0.02 00.56 0.45
Sample 46 24 42 34 46 PCB138 0.43 06.42 6.27

Source Contributions Matrix End-Member Source Compositions Matrix [Ft]
(Mixing Proportions) [A] (Shown graphically in Figure 12.1)

Sample Source 1 Source 2 Source 3 IUPAC Source 1 Source 2 Source 3
Number Aroclor Late Typical Congener Aroclor Late Typical

1248 (%) Production Aroclor 1248 Production Aroclor 
Aroclor 1260 (%) Aroclor 1260
1254 (%) 1254

Table 12.2

Input matrices for artificial three-source PCB mixture. Multiplication by Equation 12.1 ( X � A* F) yields error free matrix X.
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the dimensionality of a data set in which there are a large number of inter-
related (i.e., correlated) variables. This reduction in dimension is achieved 
by transforming the data to a new set of uncorrelated reference variables 
(principal components or PCs). The PCs are sorted such that each in turn
accounts for a progressively smaller percentage of variance within the data 
set. If nearly all variability between samples can be accounted for by a small
number of PCs, then relationships between multivariate samples may be
assessed by simple inspection of a two- or three-dimensional plot: a principal
components scores plot. Figure 12.2 shows a two-PC scores plot for Data Set 1.
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Source Contributions Matrix End-Member Source Compositions Matrix [Ft]
(Mixing Proportions) [A] (Shown graphically in Figure 12.1)

Sample Source 1 Source 2 Source 3 IUPAC Source 1 Source 2 Source 3
Number Aroclor Late Typical Congener Aroclor Late Typical

1248 (%) Production Aroclor 1248 Production Aroclor 
Aroclor 1260 (%) Aroclor 1260
1254 (%) 1254

Sample 47 47 21 32 47 PCB141 0.09 0.74 1.06
Sample 48 71 6 23 48 PCB146 0.05 0.49 0.72
Sample 49 37 39 24 49 PCB149 0.35 1.96 3.94
Sample 50 68 23 8 50 PCB151 0.08 0.24 0.75

51 PCB153 0.45 3.55 4.07
52 PCB156 0.04 1.22 0.89
53 PCB158 0.04 0.97 0.88
54 PCB163 0.08 0.75 1.11
55 PCB170 0.08 0.38 0.56
56 PCB180 0.22 0.45 0.72
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Figure 12.2

Two principal component
scores plot of Data Set 1.
Two PCs account
for � 92% of the 
variance of Data Set 1,
but are insufficient to
allow distinction of the
two Aroclor 1254 
variants.

Table 12.2

Continued

chap-12.qxd  6/13/01  8:11 PM  Page 473

Case 4:05-cv-00329-GKF-PJC     Document 2252-3 Filed in USDC ND/OK on 06/19/2009     Page 13 of 56



I N T R O D U C T I O N  T O  E N V I R O N M E N TA L  F O R E N S I C S474

Sample 1 0.29 0.30 0.94 0.24 U 0.99 1.2 0.24 0.52
Sample 2 0.66 U 0.66 U 1.6 0.66 U 2.8 2.8 0.66 U 1.3
Sample 3 0.59 0.82 2.2 1.16 4.3 3.9 0.79 1.9
Sample 4 1.5 1.7 6.9 2.70 12.2 9.6 1.6 4.5
Sample 5 0.64 0.80 2.9 0.64 U 3.1 3.2 0.72 1.7
Sample 6 1.2 1.7 5.4 2.2 9.2 9.8 1.6 3.2
Sample 7 3.8 4.3 14.7 6.4 28.0 26.0 4.3 8.8
Sample 8 2.7 2.6 10.2 3.2 15.4 17.9 2.9 8.2
Sample 9 1.3 U 1.3 U 1.3 U 1.3 U 1.3 U 1.3 U 1.3 U 1.3 U
Sample 10 1.8 2.0 7.8 3.1 10.9 13.4 2.6 5.6
Sample 11 1.4 1.3 5.8 2.4 8.6 7.9 1.6 3.4
Sample 12 1.5 2.0 7.6 3.3 15.6 13.0 2.5 5.0
Sample 13 2.4 3.2 11.0 4.4 15.7 18.9 3.2 7.5
Sample 14 1.1 1.3 4.0 1.7 7.1 8.1 1.2 2.9
Sample 15 1.5 2.2 5.2 2.8 11.3 12.1 2.1 4.9
Sample 16 1.9 2.9 8.7 4.2 14.8 16.3 2.3 6.7
Sample 17 1.1 U 1.1 U 1.4 1.1 U 2.3 2.6 1.1 U 1.1 U
Sample 18 0.60 0.76 3.1 1.1 4.2 4.4 0.65 2.02
Sample 19 1.7 2.4 8.8 3.8 13.9 14.8 2.3 4.9
Sample 20 3.5 3.6 12.8 3.9 15.9 15.6 2.9 6.9
Sample 21 1.8 2.1 8.0 2.6 10.8 11.6 2.2 4.7
Sample 22 3.0 3.7 17.4 5.8 20.3 20.8 4.2 9.0
Sample 23 1.5 1.8 7.3 3.4 12.2 9.5 2.0 4.8
Sample 24 2.0 2.3 8.1 3.4 15.2 14.3 2.7 5.0
Sample 25 4.3 3.7 20.8 9.2 37.2 37.5 5.5 15.9
Sample 26 0.50 U 0.50 U 1.6 0.50 U 2.0 2.3 0.50 U 1.2
Sample 27 1.7 2.2 6.8 2.7 12.1 13.3 2.6 5.2
Sample 28 1.6 2.0 7.2 2.2 11.2 11.0 2.0 4.2
Sample 29 1.5 1.9 6.6 2.7 9.7 12.1 2.4 4.4
Sample 30 1.8 2.3 7.5 3.2 14.8 12.7 2.3 5.5
Sample 31 0.71 0.99 2.14 0.90 4.3 4.6 0.70 2.0
Sample 32 1.2 1.4 5.2 2.2 8.0 9.3 1.5 3.9
Sample 33 0.78 U 0.78 U 0.86 0.78 U 1.2 1.2 0.78 U 0.78 U
Sample 34 0.66 U 0.66 U 2.1 0.66 U 2.4 3.0 0.66 U 1.3
Sample 35 1.8 1.8 8.0 2.8 11.3 10.7 2.1 5.2
Sample 36 1.3 1.8 6.2 2.4 11.0 7.6 1.7 4.5
Sample 37 1.0 1.6 4.0 2.4 6.6 8.6 1.5 2.9
Sample 38 0.78 1.0 2.8 1.3 5.5 6.0 0.76 2.3
Sample 39 0.72 U 1.1 3.0 1.4 5.5 4.6 0.92 1.8
Sample 40 1.9 2.5 9.3 3.9 13.1 13.4 1.9 6.7
Sample 41 0.46 0.44 1.7 0.52 2.2 3.0 0.41 1.1
Sample 42 0.36 U 0.36 U 0.83 0.36 U 1.2 0.85 0.36 U 0.6
Sample 43 0.74 0.83 3.3 1.2 6.0 5.1 0.85 2.6
Sample 44 1.09 1.2 5.3 1.8 6.8 6.3 1.4 2.3
Sample 45 2.6 2.2 10.3 3.8 20.2 19.2 3.0 8.1
Sample 46 2.2 2.5 8.4 3.0 12.0 16.5 2.3 4.6
Sample 47 2.3 2.4 10.0 4.2 13.3 12.5 2.7 6.9
Sample 48 7.4 9.8 40.3 14.2 60.7 52.6 10.0 23.9
Sample 49 2.5 3.5 14.1 5.4 21.0 19.7 4.0 8.3
Sample 50 3.5 4.2 12.9 4.2 17.9 24.0 4.0 9.3
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Table 12.3

Data Set 2 (50 Sample by 56 congeners) created by (1) multiplication of matrices A and F (Table 12.2) as per Equation 12.1;
(2) transfomation of to concentrations (ng/g); (3) addition of 10% random Gaussian noise; (4) censoring of the data based
on a sample specific detection limit (censored data qualified as ‘U’. Reported measurement is the detection limit); (5) simulation
of a data transcription errors in Sample 22; and (6) simulation of DDT coelution with PCB 141 in a subset of samples.
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0.30 0.63 0.24 U 0.66 6.0 0.24 U 0.69 0.50 3.6 12.4 0.41
0.66 U 0.66 U 0.66 U 0.92 4.0 0.66 U 1.1 0.73 3.0 7.7 0.66 U
0.83 0.74 0.45 1.7 5.2 0.84 2.0 1.3 3.6 6.5 0.82
1.9 1.8 1.4 3.3 10.8 1.9 4.6 3.8 9.4 14.6 2.0
0.71 1.5 0.64 U 1.7 16.8 0.64 U 1.9 1.6 9.0 34.6 1.1
1.6 1.6 1.2 3.1 8.6 1.6 4.6 3.1 7.8 14.2 1.3
4.4 5.2 3.3 8.7 35.5 4.2 11.7 5.1 23.1 47.7 3.8
3.0 3.1 2.2 6.1 27.1 2.6 7.5 4.4 14.2 39.2 2.86
1.3 U 1.3 U 1.3 U 1.3 U 2.2 1.3 U 1.3 U 1.3 U 1.4 3.9 1.3 U
2.2 1.8 1.6 3.8 14.2 1.8 5.9 3.5 9.3 14.7 2.3
1.4 2.5 1.2 3.2 12.8 1.4 3.9 2.9 8.3 14.9 1.8
2.4 2.5 1.8 5.2 14.7 2.4 6.0 4.3 10.7 18.2 2.6
2.9 3.0 2.6 5.0 24.5 3.0 8.1 3.7 16.6 32.2 2.4
1.4 2.1 1.1 2.8 10.7 1.1 3.4 2.6 6.9 13.7 1.4
1.8 1.8 1.5 4.5 13.8 1.7 4.9 3.3 10.7 25.3 1.7
2.5 2.8 1.9 6.0 19.5 2.9 6.4 3.9 13.6 20.5 2.6
1.1 U 1.1 U 1.1 U 1.1 U 2.4 1.1 U 1.2 1.1 U 1.9 2.4 1.1 U
0.85 1.1 0.61 1.7 8.8 0.92 2.4 1.5 4.4 15.4 0.84
2.4 2.1 1.9 3.9 15.0 2.3 6.2 3.3 9.3 15.7 2.3
3.4 3.8 1.9 6.5 45.1 3.3 8.0 5.8 25.5 96.0 3.7
2.0 2.3 1.4 3.8 15.8 2.1 4.7 3.5 10.7 28.9 2.3
3.9 4.4 2.8 7.7 21.6 3.2 10.4 5.3 19.8 30.9 3.2
1.8 2.4 1.6 4.1 14.9 1.8 5.3 3.2 7.6 16.4 1.9
2.3 2.4 2.0 4.0 14.0 2.3 5.5 4.2 10.7 18.0 2.2
6.5 6.8 4.8 12.3 38.2 6.5 13.5 10.3 25.6 34.3 6.1
0.50 U 1.5 0.50 U 0.98 9.0 0.50 U 1.0 0.92 4.8 16.0 0.65
2.2 2.7 1.7 4.9 19.8 2.2 6.5 3.7 11.5 35.9 2.5
2.0 1.6 1.5 4.1 13.2 1.9 5.6 3.1 7.9 18.9 1.9
1.9 2.2 1.4 4.1 23.3 2.2 4.9 3.6 14.2 36.1 2.1
2.2 2.6 1.8 5.1 11.4 2.6 4.9 3.7 10.5 18.8 2.4
0.77 0.86 0.58 U 1.6 5.3 0.7 2.3 1.4 4.5 7.3 0.62
1.4 4.0 1.3 3.8 19.9 1.2 3.6 2.7 11.1 29.6 1.8
0.78 U 0.78 U 0.78 U 0.78 U 4.2 0.78 U 0.78 U 0.78 U 2.3 8.9 0.78 U
0.66 U 1.6 0.66 U 1.42 13.0 0.66 U 1.4 1.0 4.7 17.7 0.84
1.9 2.7 1.6 4.7 20.0 1.7 4.3 3.7 14.4 38.1 2.2
1.6 1.9 1.4 3.2 14.2 1.9 4.4 3.0 10.7 20.0 1.5
1.2 1.7 1.0 2.4 14.1 1.3 3.9 3.0 8.4 17.1 1.4
0.88 0.97 0.65 1.7 5.9 0.95 2.2 1.5 4.6 7.6 0.77
1.08 1.2 0.72 U 2.0 6.0 0.74 2.4 1.4 3.8 5.6 0.81
2.20 2.6 1.9 4.8 22.4 2.0 6.3 4.3 14.0 34.8 2.2
0.46 0.64 0.26 U 1.1 9.3 0.43 1.0 0.79 4.2 17.1 0.61
0.36 U 0.36 U 0.36 U 0.54 3.1 0.36 U 0.49 0.36 U 1.6 5.8 0.36 U
1.1 1.5 0.73 2.0 6.7 0.99 2.6 1.6 5.1 10.9 0.89
1.0 1.6 0.87 2.6 11.2 1.1 3.2 2.2 6.1 20.1 1.2
2.8 3.2 2.59 6.59 20.83 3.47 7.37 4.4 15.7 23.5 3.4
2.0 2.7 1.77 4.55 20.20 2.04 5.57 4.1 10.9 31.3 2.5
2.6 3.1 2.01 5.54 20.30 2.20 6.03 4.9 14.8 22.9 2.3

11.8 11.3 8.45 18.67 65.55 9.52 27.48 17.8 47.1 88.7 10.4
3.4 4.2 2.92 7.14 26.77 3.10 11.34 6.0 18.5 36.5 4.1
4.1 4.1 3.25 5.79 25.26 4.25 9.21 6.4 19.2 27.6 3.4
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Sample 1 4.1 1.9 1.9 8.7 20.0 0.66 5.2 0.52
Sample 2 2.8 2.0 2.0 6.3 10.5 0.82 3.9 0.66 U
Sample 3 3.1 2.5 2.8 6.5 7.7 1.3 4.9 0.46
Sample 4 6.4 5.9 7.3 17.7 21.6 3.2 8.9 1.1
Sample 5 11.1 5.5 4.5 16.0 53.0 2.0 13.7 1.1
Sample 6 6.3 5.1 7.0 13.4 20.0 3.8 9.6 1.2
Sample 7 15.4 14.8 15.9 39.5 42.5 9.5 22.1 2.7
Sample 8 11.9 8.3 11.6 21.5 35.6 7.0 15.1 1.7
Sample 9 1.5 1.3 U 1.3 U 2.8 4.8 1.3 U 1.7 1.3 U
Sample 10 9.7 6.2 8.7 20.4 27.7 4.9 15.0 1.5
Sample 11 12.5 9.8 7.3 32.3 49.7 2.8 18.7 2.1
Sample 12 7.1 5.9 7.3 21.2 24.5 5.1 12.9 1.5
Sample 13 13.1 10.3 10.0 25.7 36.7 6.1 17.5 1.6
Sample 14 13.4 7.8 6.4 27.4 46.8 2.6 18.6 1.2
Sample 15 8.7 7.6 8.7 16.8 25.1 3.9 11.1 1.2
Sample 16 12.9 9.9 10.6 27.6 42.8 5.1 15.5 1.7
Sample 17 2.2 1.9 1.6 4.6 5.4 1.1 U 2.8 1.1 U
Sample 18 8.6 5.1 4.0 14.3 35.1 1.5 12.5 0.83
Sample 19 12.1 9.4 8.8 24.8 36.7 4.9 19.1 1.4
Sample 20 16.3 8.3 18.5 28.1 66.5 6.9 28.1 1.7
Sample 21 8.0 6.4 7.8 20.3 24.6 4.5 15.7 1.1
Sample 22 18.6 13.3 13.3 36.2 60.9 7.4 27.6 1.6
Sample 23 9.2 6.3 7.2 17.1 25.1 3.9 11.4 1.1
Sample 24 10.1 7.3 10.5 28.0 38.0 4.7 18.2 1.8
Sample 25 25.1 20.6 23.2 49.2 67.8 13.6 33.4 4.2
Sample 26 10.2 5.9 3.6 22.0 49.7 1.2 15.3 1.1
Sample 27 13.7 8.0 8.6 31.8 48.8 5.0 20.0 2.0
Sample 28 7.0 5.7 7.5 18.4 19.7 4.6 11.4 1.1
Sample 29 9.2 5.9 8.8 22.1 37.8 3.7 16.0 1.1
Sample 30 9.8 7.2 10.0 17.2 22.0 4.3 13.4 1.5
Sample 31 4.3 2.8 3.1 8.4 11.0 1.8 5.1 0.58 U
Sample 32 26.1 20.0 10.3 62.3 98.3 3.8 33.6 3.4
Sample 33 3.2 1.9 1.9 6.0 13.5 0.78 U 3.6 0.78 U
Sample 34 13.5 9.0 5.5 35.2 70.0 1.8 19.6 1.7
Sample 35 15.4 9.4 11.0 33.0 54.2 4.1 20.0 1.8
Sample 36 9.1 6.6 8.1 18.9 22.9 3.2 11.4 1.2
Sample 37 6.7 5.7 5.1 17.0 22.2 3.0 9.4 1.0
Sample 38 4.1 2.9 3.5 9.6 11.4 2.1 5.5 0.62 U
Sample 39 5.2 3.2 3.3 9.3 15.2 2.1 5.9 0.75
Sample 40 8.7 7.1 10.8 19.2 29.2 4.7 13.3 1.2
Sample 41 4.4 2.2 2.7 9.2 19.7 0.87 6.0 0.55
Sample 42 1.1 0.64 1.1 1.8 4.6 0.36 1.7 0.36 U
Sample 43 6.2 4.9 4.8 11.5 22.4 2.0 8.5 0.8
Sample 44 11.0 7.1 5.8 19.9 30.0 2.5 10.6 1.2
Sample 45 14.8 10.0 13.0 28.1 46.0 6.8 20.5 2.9
Sample 46 16.3 8.9 10.7 34.0 55.3 5.1 21.2 2.3
Sample 47 11.6 8.9 10.1 22.5 31.1 5.5 17.9 1.6
Sample 48 32.1 28.3 33.6 93.1 96.4 22.7 67.4 5.5
Sample 49 20.5 15.1 14.4 48.2 59.9 8.0 31.6 2.9
Sample 50 13.4 13.1 16.5 32.4 40.0 8.3 23.7 2.3
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5.0 6.7 6.1 14.0 3.0 12.2 9.9 14.3 27.3 17.0 33.2
1.7 3.3 3.1 6.0 1.5 8.9 5.6 6.1 13.3 8.5 16.4
1.2 2.0 1.8 3.0 0.80 3.6 2.7 3.7 5.8 3.6 6.9
2.4 3.1 3.7 4.7 1.2 5.5 4.2 6.3 9.0 6.7 11.0

10.8 19.8 15.7 40.2 9.1 47.2 23.7 37.6 65.7 51.0 88.3
3.4 3.7 4.7 5.4 1.6 7.1 4.6 8.9 12.0 8.5 15.2
9.0 16.3 12.4 24.4 7.2 38.8 17.1 24.4 45.9 27.5 48.6
7.7 11.1 9.4 20.9 5.4 27.6 13.3 18.5 39.2 19.6 44.4
1.3 1.9 1.6 3.0 1.3 U 3.4 2.2 3.4 6.3 4.0 6.7
3.6 4.6 6.7 8.5 1.7 6.1 5.8 11.7 16.1 15.3 19.2

11.6 10.9 12.3 20.7 3.7 16.6 14.1 25.8 39.7 42.6 47.6
3.5 6.5 5.5 9.2 3.1 13.5 7.3 10.4 20.0 12.5 27.8
5.3 12.0 8.2 17.2 4.3 23.0 10.3 17.3 31.8 16.7 37.5
9.8 12.5 14.3 21.9 4.3 14.7 16.7 27.6 36.9 39.0 56.4
4.6 8.3 6.1 11.5 3.0 14.5 9.8 10.3 17.3 13.8 27.1
6.6 8.7 12.2 16.3 3.3 12.6 12.1 17.8 29.1 23.7 35.4
1.1 U 1.1 U 1.6 2.3 1.1 U 1.6 1.7 3.0 3.5 3.1 5.2
6.04 8.22 10.74 14.49 3.84 14.25 11.2 17.9 29.7 30.5 43.3
6.6 6.9 9.9 11.4 2.4 11.7 10.5 21.2 19.5 22.5 31.7

19.3 42.8 23.4 65.3 20.0 106.9 45.5 57.5 115.2 51.1 128.4
5.2 8.1 5.9 13.1 3.9 19.1 10.6 11.7 25.9 15.2 32.5
5.5 12.1 14.3 15.8 4.3 23.2 17.7 24.7 33.1 41.5 27.9
3.8 5.9 5.5 10.9 2.5 9.9 6.3 10.7 18.7 10.8 18.3
6.2 8.0 9.6 11.7 2.1 11.2 10.4 13.8 19.3 25.4 28.3
8.1 11.5 16.7 22.0 4.5 19.5 19.1 27.3 35.0 35.9 51.7

11.3 14.3 12.5 23.5 6.1 20.2 22.1 31.7 45.0 40.1 67.4
10.6 16.3 13.7 24.7 6.3 31.8 19.2 30.8 50.1 36.3 74.2
3.2 5.2 4.1 9.2 2.4 10.3 5.8 8.5 13.0 8.1 19.8
9.3 16.2 11.6 25.1 7.8 30.6 19.6 23.6 51.0 30.0 51.3
2.9 5.0 3.3 6.6 2.2 10.0 5.0 8.8 13.1 8.9 18.8
1.3 2.8 2.7 4.7 1.1 5.7 3.4 5.4 7.7 6.0 8.8

21.7 26.1 41.5 62.2 12.1 39.5 38.7 68.2 91.4 112.6 137.7
3.5 3.9 4.8 8.3 1.8 10.0 5.5 9.8 15.8 11.0 19.4

13.9 19.3 23.3 37.3 7.3 23.3 28.3 44.3 53.2 68.4 83.2
13.5 16.1 14.4 34.6 8.8 34.3 20.2 38.8 68.4 42.8 72.8
4.0 7.9 7.0 13.2 3.6 12.5 8.1 12.7 21.6 16.2 33.2
4.9 6.1 5.8 13.0 3.1 15.1 8.2 12.7 21.2 14.4 26.7
1.9 2.8 2.9 4.8 1.0 5.6 3.4 5.1 7.6 6.4 11.8
2.3 2.5 4.1 5.3 1.0 3.9 4.8 8.0 9.5 8.7 13.0
6.3 11.9 8.9 16.5 4.8 24.2 12.6 12.9 31.6 14.2 36.4
4.2 7.3 6.2 14.1 3.8 19.9 11.8 12.0 28.6 16.4 30.4
1.4 2.3 1.5 3.4 1.2 6.1 2.3 3.7 7.6 3.2 8.5
3.9 6.2 6.1 9.9 2.0 9.6 8.7 9.8 19.4 12.3 27.0
6.9 7.4 11.9 15.7 4.5 18.7 10.4 19.9 26.2 30.6 27.2
6.0 8.8 10.1 12.2 3.0 10.6 11.8 19.3 18.8 20.6 33.3

11.3 12.9 16.8 26.5 5.9 32.1 20.3 33.8 50.4 40.8 65.7
5.6 8.9 9.8 15.5 4.2 16.0 10.2 15.2 29.8 16.4 40.1

12.4 17.1 15.9 27.2 7.2 37.2 26.0 33.4 50.4 30.3 57.3
9.8 17.0 18.4 28.5 5.7 28.0 18.5 38.5 59.5 48.6 70.7
5.6 6.2 8.0 10.8 2.4 12.4 10.6 14.8 20.3 19.4 26.3
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Sample 1 34.3 4.9 2.1 6.9 1.6 1.5 1.7 24.9
Sample 2 16.7 2.2 0.93 3.3 0.72 0.81 0.66 6.9
Sample 3 6.1 0.87 0.44 U 1.3 0.44 U 0.44 U 0.44 U 3.4
Sample 4 9.6 1.5 0.92 U 1.6 0.92 U 0.92 U 0.92 U 6.0
Sample 5 90.2 14.5 5.3 17.6 4.6 4.8 3.7 42.5
Sample 6 18.8 2.1 0.98 U 2.1 0.98 U 0.98 U 0.98 U 8.2
Sample 7 47.0 7.1 3.4 11.1 3.0 3.9 2.3 34.4
Sample 8 37.6 5.5 2.3 8.5 2.7 3.3 1.8 26.7
Sample 9 8.1 1.3 U 1.3 U 1.6 1.3 U 1.3 U 1.3 U 5.0
Sample 10 27.4 3.0 0.81 2.7 0.63 0.61 0.87 10.0
Sample 11 78.1 11.2 3.1 11.0 2.0 1.6 3.0 39.1
Sample 12 26.4 3.1 1.0 4.7 1.2 1.4 0.88 11.8
Sample 13 29.3 5.2 2.0 6.2 1.9 2.2 1.6 16.8
Sample 14 78.1 9.7 3.3 8.7 2.1 1.5 2.7 34.4
Sample 15 20.9 4.4 1.2 6.4 1.3 1.8 1.2 15.4
Sample 16 44.9 5.6 2.0 5.2 1.5 1.6 1.6 21.7
Sample 17 5.6 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 2.6
Sample 18 55.3 7.2 2.5 6.5 2.0 1.7 2.2 26.5
Sample 19 40.6 5.6 1.3 5.5 0.96 1.1 1.4 16.2
Sample 20 126.1 25.1 8.8 39.0 8.1 7.0 7.1 103.7
Sample 21 27.5 4.4 1.8 8.1 2.0 1.7 1.5 18.7
Sample 22 9.4 7.7 25.3 7.4 0.29 7 1 2
Sample 23 26.6 2.8 1.2 4.4 1.1 1.0 1.0 13.1
Sample 24 41.3 4.7 1.4 4.5 1.0 0.94 1.5 15.6
Sample 25 60.0 6.0 2.1 8.6 1.7 1.4 2.1 26.3
Sample 26 94.0 12.0 3.4 11.9 3.1 2.8 3.7 43.4
Sample 27 77.8 9.8 4.2 16.2 3.6 3.6 2.7 41.4
Sample 28 16.3 2.1 0.78 3.3 0.8 1.1 0.8 9.4
Sample 29 53.7 7.3 3.7 15.0 4.7 3.5 2.4 35.1
Sample 30 17.8 2.0 0.68 2.8 0.75 0.94 0.47 7.8
Sample 31 11.3 1.5 0.58 U 1.6 0.58 U 0.58 U 0.58 U 5.2
Sample 32 213.0 23.8 8.6 26.4 4.9 4.9 6.2 87.6
Sample 33 19.3 3.3 1.4 3.7 1.1 1.1 0.96 11.7
Sample 34 110.8 13.2 5.4 14.8 3.5 3.5 4.5 59.1
Sample 35 109.7 14.5 4.5 15.6 4.6 4.1 3.1 57.1
Sample 36 30.6 5.5 1.5 6.9 1.3 1.6 1.1 19.3
Sample 37 33.4 5.0 1.5 5.4 1.2 1.5 1.4 14.9
Sample 38 11.4 1.5 0.62 U 1.86 0.62 U 0.62 U 0.62 U 5.1
Sample 39 17.8 2.5 0.72 U 2.34 0.72 U 0.72 U 0.72 U 7.4
Sample 40 34.6 6.5 2.2 9.0 2.5 2.5 1.9 22.2
Sample 41 36.9 5.7 2.3 8.5 1.9 2.2 1.8 20.1
Sample 42 8.2 1.3 0.55 1.9 0.58 0.63 0.39 5.55
Sample 43 32.8 3.8 1.2 4.6 0.92 1.0 1.3 13.2
Sample 44 52.7 7.5 2.4 9.0 1.7 2.0 2.5 24.2
Sample 45 38.2 5.3 1.6 5.4 0.84 0.9 1.5 18.3
Sample 46 74.9 11.0 3.9 13.5 2.9 2.8 3.6 39.4
Sample 47 40.2 4.9 1.6 6.1 1.6 1.6 1.3 20.5
Sample 48 67.6 7.1 2.7 10.4 3.1 3.0 2.1 24.7
Sample 49 94.5 10.8 3.1 12.4 2.9 3.2 3.3 37.2
Sample 50 31.4 3.6 0.98 4.4 0.88 1.0 1.0 12.8
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10.5 2.0 10.3 1.4 12.1 3.4 3.2 2.7 1.8 2.1
3.6 0.9 3.8 0.80 5.2 1.2 1.1 1.5 0.76 1.19
2.2 0.44 U 1.7 0.44 U 1.8 0.57 0.53 0.59 0.44 U 0.46
4.2 0.92 U 2.5 0.92 U 3.1 0.92 U 0.92 U 0.92 U 0.92 U 0.92 U

26.5 5.4 30.3 4.2 25.4 9.6 6.9 8.5 4.3 5.9
6.0 0.98 U 4.0 0.98 U 3.94 1.16 1.18 1.30 0.98 U 1.0

22.4 3.8 19.0 3.4 19.1 5.0 4.6 4.8 2.8 3.7
15.7 3.2 14.9 3.0 18.2 3.8 3.8 4.6 2.2 3.5
5.7 1.3 U 2.3 1.3 U 2.4 1.3 U 1.3 U 1.3 U 1.3 U 1.3 U
5.0 0.97 4.8 0.69 7.4 2.1 1.4 1.6 0.76 1.6

16.9 2.7 13.8 1.6 20.4 6.3 4.6 5.0 2.3 3.3
10.5 1.0 6.6 1.3 7.7 1.9 1.7 2.1 1.2 1.4
10.0 2.5 9.7 2.3 15.2 2.9 2.5 3.4 1.7 2.9
26.1 2.3 12.5 2.1 20.3 7.2 5.2 3.5 2.2 3.0
9.2 1.6 7.9 1.6 10.6 1.9 2.0 2.5 1.4 1.9

13.2 1.9 9.3 1.5 14.1 3.4 2.8 3.6 1.4 2.9
6.0 1.1 U 1.2 1.1 U 1.6 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U

13.8 2.5 11.1 1.6 15.0 4.7 3.8 3.3 1.7 2.6
8.6 1.6 5.7 0.9 9.8 3.2 2.4 2.7 1.2 1.5

57.6 10.0 62.8 9.7 59.6 13.9 10.7 11.6 8.5 11.1
12.1 1.9 11.5 2.2 11.0 2.4 2.8 3.4 1.8 2.4
7 17 6 0.97 17.76 4.59 5.22 3.59 2.45 2.87
9.9 1.3 6.6 1.2 8.2 2.0 2.2 2.0 1.0 1.2

12.2 1.3 7.4 1.1 9.4 3.5 3.0 2.0 1.2 1.5
12.2 2.4 9.3 1.9 15.4 3.7 3.5 3.2 1.8 3.1
31.1 3.5 20.0 2.7 25.0 7.6 6.2 6.5 2.6 4.0
32.6 3.6 17.5 4.2 25.9 6.6 5.3 6.9 3.5 3.8
4.4 1.1 5.6 0.98 7.0 1.8 1.3 1.9 0.79 1.3

17.0 3.6 19.9 4.0 23.3 6.4 5.6 6.4 3.5 3.6
6.8 0.91 4.5 0.93 4.1 1.1 1.1 1.4 0.86 1.3
2.5 0.58 U 2.7 0.58 U 3.5 0.85 0.82 0.94 0.58 U 0.60

58.9 8.6 34.4 5.1 51.4 17.0 13.6 12.3 5.5 7.5
9.1 1.3 5.5 0.93 8.5 2.3 2.0 1.9 1.0 1.4

35.4 5.1 22.3 2.3 37.7 11.3 8.9 7.3 3.8 3.7
43.3 4.7 26.3 4.6 30.5 7.9 6.9 8.0 3.5 4.8
2.8 1.6 8.7 1.5 9.7 3.0 2.7 2.4 1.6 1.9
2.3 1.8 8.1 1.5 10.7 2.6 2.5 2.4 1.2 1.8
0.93 0.62 U 2.7 0.62 U 4.9 0.86 0.66 0.94 0.62 U 0.74
0.98 0.72 U 3.3 0.72 U 4.6 1.2 1.1 0.91 0.72 U 0.80
4.3 2.4 16.1 2.5 15.8 3.4 3.0 4.2 2.5 3.2
3.3 2.2 10.1 2.1 14.0 3.0 3.3 3.1 1.9 2.5
0.95 0.54 3.0 0.76 3.5 0.75 0.75 1.0 0.40 0.66
1.7 1.2 6.1 0.99 9.0 2.7 2.1 2.0 1.1 1.4
3.3 2.2 9.1 2.2 14.5 4.8 3.8 3.4 1.9 2.6
2.1 1.3 5.7 0.95 9.6 3.4 2.5 2.7 1.4 1.8
5.0 3.6 17.8 3.1 25.0 7.4 6.0 6.0 3.6 3.5
3.0 2.5 11.5 1.9 11.1 3.2 2.8 2.8 1.7 2.2
5.2 3.5 20.0 3.0 22.9 4.5 3.5 5.5 2.9 5.6
5.8 3.4 21.4 2.6 21.5 6.4 5.0 5.6 2.9 3.8
1.8 1.3 6.2 1.0 9.8 2.4 2.1 1.7 1.2 1.9
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Two principal components account for more than 92% of the variance in Data
Set 1, and the scores plot clearly divides the samples into two clusters: Aroclor
1248 and Aroclor 1254.

There is an obvious problem though. While this is indeed a two Aroclor sys-
tem (as Figure 12.2 clearly suggests) it is not a two-source system. The first two
PCs do not differentiate between the two Aroclor 1254 variants. This illustrates
a common problem in the application of PCA to environmental chemical data.
All too often, investigators will present a two-PC scores plot like Figure 12.2,
accompanied by a statement of justification indicating that two principal 
components accounts for 92.5% of the variance. Such a statement leaves the
tacit implication that the residual 7.5% of the variance is random noise, which
in this case is clearly not the case.

A three component scores plot for Data Set 1 is shown as Figure 12.3. Three
PCs account for 97.5% of the variance; an incremental increase over the 
percentage accounted for by two PCs. However, that small percentage of total
variance is not random. The three-PC scores plot clearly distinguishes three
clusters, rather than two, and effectively allows the analyst to infer the presence
of three sources.

This example highlights several important precautionary notes.

1 For better or for worse, the use of mathematical techniques such as PCA carries 

with it the aura of precision and exactitude. In the case of the two-PC scores plot

(Figure 12.2) the strong clustering into two Aroclor groups, coupled with the

statement that two PCs account for 92.5% of the variance, may be sufficiently

intimidating to impress skeptics. Moreover, it may even provide a false sense of 

security to the naïve analyst.
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Three principal 
component scores plot of
Data Set 1. Three PCs
account for 97.5% of the
variance, and allow clear
distinction of the three
PCB sources.
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2 In an environmental forensics setting, we seldom have prior knowledge of the true

data structure, so we should not be arrogant in our application of rules-of-thumb

regarding what percentage of variance should be considered ‘significant’.

3 Scientific and legal ‘significance’ is clearly not a function of variance. If a party

involved in environmental litigation had used Aroclor 1254, but ceased all operations

in the mid-1960s (prior to Monsanto’s change in the Aroclor 1254 production

process), the small difference in percentage of variance between two and three PCs

would have enormous implications.

4 Practitioners of PCA-based methods in environmental forensics must employ more

sophisticated goodness-of-fit diagnostics than percentage variance, and they must 

have a reasonable understanding of how such methods work.

Because PCA is a powerful exploratory data analysis tool on its own, as well as
an intermediate step in receptor modeling methods, we will discuss this method
in considerable detail below. The key steps in PCA include: (1) data transfor-
mations; (2) singular value decomposition (eigenvector decomposition); 
(3) determination of the number of significant eigenvectors; and (4) visual dis-
play of scores and loadings plots. Each of these steps are discussed in turn below.

12.2.2 DATA TRANSFORMATIONS

To the data analyst, the laboratory results received from the chemist are ‘raw
data’. In environmental chemistry these raw data are usually transmitted in
units of concentration. Data Set 2 (Table 12.3: presented in units of ng/g) is a
good example. However, seldom is a statistical analysis performed on a matrix
in this form. Rather, the matrix is transformed in some manner. A data trans-
formation is the application of some mathematical function to each measure-
ment in a matrix. Taking the square root of every value in a matrix is an
example. In analysis of environmental chemical data, data transformations are
done either for (1) reasons related to the environmental chemistry of the 
system; or (2) mathematical reasons, to optimize the analysis.

A transformation commonly done for chemical or physical reasons is sample
normalization. In an environmental system, concentrations can vary widely due
to dilution away from a source. For example, in the case of contaminated sed-
iment investigations, concentrations may decrease exponentially away from an
effluent pipe. However, if the relative proportions of individual analytes remain
relatively constant then we might infer a single source scenario, coupled with
dilution away from the source. Inference of source by pattern recognition 
techniques is concerned more with the relative proportions between analytes
than with absolute concentrations. Thus, a transformation is necessary to nor-
malize out concentration/dilution effects. One that is commonly employed is
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a transformation to a percent metric, where each value is divided by the total
concentration of the sample. This percent transformation is also referred to as
a ‘constant row-sum’ transformation, because the sum of analyte concentra-
tions in each sample (i.e., across rows) sums to 100%. Stated mathematically,
where S is an m � m diagonal matrix with the m row-sums (total concentra-
tions) of X(nk) along the diagonal, and zeros on the off-diagonals, the constant
row-sum matrix X may be calculated as:

(12.2)

An alternative to the constant row-sum transformation is to normalize the data
with respect to a single species or compound (a so-called ‘normalization 
variable’). This transformation involves setting the value of the normalization
variable to 1.0, and the values of all other variables to some proportion of 1.0,
such that their ratios with respect to the normalization variable remain the
same as in the original metric.

The second type of transformation is done more for mathematical/statistical
purposes. In any chemical data set, there is usually a strong relationship between
the mean value of an analyte and its variance (variance is square of the standard
deviation). Therefore, chemicals measured in trace concentrations almost always
exhibit smaller variance than those measured at much higher concentrations.
Multivariate procedures such as PCA are variance driven, so in the absence of
some transformation across variables, the analytes with highest mean and vari-
ance usually have the greatest influence on the analysis. Polychlorinated dibenzo-
p -dioxins provide a particularly instructive example. In most environmental
systems, 2,3,7,8-TCDD (dioxin) is typically measured at orders of magnitude
lower concentrations than the octa-chlorinated congener OCDD. Thus the mean
and variance of 2,3,7,8-TCDD is typically orders of magnitude lower than OCDD.
However, this does not imply less precision or accuracy in the chemical measure-
ment of 2,3,7,8-TCDD. Nor does it imply that 2,3,7,8-TCDD is of secondary envi-
ronmental importance to OCDD. In fact, the opposite is usually the case because
2,3,7,8-TCDD has much higher toxicity than does OCDD. As such, analysis of
environmental chemical data almost always requires some sort of ‘homogeneity
of variance’ transformation. A number of transformations may be applied to pro-
duce homogeneity of variance. One of the most commonly used transformations
in PCA is autoscale transform (also known as the Z transform). Given a matrix X,
with calculated means and standard deviations (sj) in each column
( j � 1, 2 …n). The autoscaled matrix Z is calculated:

(12.3)Zij
ij j

j

x x

s
�

�

( )x j

X S X(nk)� �100 1∗ ∗
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The autoscale transformation guarantees absolutely equal variance in that it
sets the mean of each column to 0.0 and the standard deviation to 1.0.

Another common homogeneity of variance transformation is the range-
transform (also known as the minimum/maximum transformation). Following
the convention of Miesch (1976a), where the original matrix is denoted X, the
range is denoted as X-prime (X� � {x�ij}). The transformation is performed as
follows:

(12.4)

This results in a matrix where the minimum value in each column equals 0.0
and the maximum equals 1.0. The range transformation produces variances
that are approximately homogeneous (unlike the Z transform, which results in
absolute homogeneity of variance). However, the range transform has two
advantages: (1) it does not force the data to conform to a theoretical distribu-
tion that might not be applicable (in the case of the Z transform: the standard
normal distribution); and (2) because transformed values are within the 0.0 to
1.0 range, all values are non-negative. The latter feature is particularly useful in
receptor modeling, where explicit constraints of non-negativity are used to
derive source fingerprints. Malinowski (1977, 1991) notes that a disadvantage
of the range transform is that it is extremely sensitive to outliers. As we will see,
however, in an environmental forensics investigation, detection and evaluation
of outliers is a crucial part of the process, so this feature of the range transform
is usually desirable.

A third transformation (the equal vector length transform) is often, but not
always, employed in multivariate analysis of chemical data. The equal vector
length transform is performed to force each of the sample vectors to have equal
Euclidean length. If all vectors have equal length, then the differences between
samples are a function only of the angles between samples. Thus the similarities
and differences between samples can be expressed as a similarity matrix of
cosines (Davis, 1986). The cosine between two identical samples is 1.0 – the
cosine between two completely dissimilar samples (i.e. vectors at 90°) is 0.0. By
Miesch’s convention (Miesch, 1976a), the constant-sum input matrix is indicated
as X, the range transform matrix as X�, and the equal vector length transform as
X �. For matrix algebra-based programming languages, a computationally effi-
cient way (Hopke, 1989) is to first define Y � {yij} (the matrix element of Y in row
i, column j). Y is a m � m diagonal matrix where each diagonal element equals
the inverse of the square root of the sum-of-squares along rows of X�:

(12.5)y
x

ij

iji
m

�

�

1
2

1

1 2
′∑� �

/

′x x x x xij ij j j j� � �( )/( )min max min
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The transformed matrix X � may then be calculated as follows:

(12.6)

This transformation has an added advantage for receptor modeling. By 
definition, if all samples have equal vector lengths, each sample must lie on an
n � 1 dimensional surface, unit length from the origin. To demonstrate this, a
simple three chemical example is shown in Figure 12.4. In this case n � 3,
because only three variables (chromium, copper and zinc) are present. These
data were transformed by Equations 12.5 and 12.6; thus all samples lie on a two-
dimensional surface, which is unit length from the origin (n � 1 � 2). As we
will see in Section 12.3, receptor/mixture modeling involves resolution of a
k � 1 dimensional geometric figure within k dimensional principal component
space. Thus, this transformation has particularly attractive features in that regard.

In summary, normalization across rows (constant row sum or normalization
to a marker chemical) is almost always done in environmental chemometric
analyses. Some homogeneity of variance transformation (e.g., range transform
or autoscale transform) is also typically performed in order to keep high con-
centration variables from dominating an analysis. The constant vector length
transform is sometimes done, usually when (1) there is some advantage to
being able to express relationships between samples simply in terms of angles
between samples; or (2) when the PCA is an intermediate step in receptor

X YX� � �
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Figure 12.4

A simple three chemical
system (n � 3: chromium,
copper and zinc) 
illustrates the two-
dimensional (n � 1)
geometry of a matrix
which has undergone 
the equal vector length
transformation. All 
sample vectors are unit
length from the origin,
and lie on the n � 1
dimensional spherical 
surface.
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modeling, which involves resolution of a k � 1 dimensional simplex within k
dimensional space. The PCA that resulted in the plots shown on Figures 12.2
and 12.3 involved transformation by the constant row sum transformation
(Equation 12.2) followed by the range transform (Equation 12.3). The 
constant vector length transformation was not used.

12.2.3 EIGENVECTOR DECOMPOSITION

Eigenvector decomposition is a simple mathematical procedure that allows a
reduction in dimensionality of a data set. This is the core mathematical opera-
tion involved in principal components analysis. It is most often accomplished
through singular value decomposition (SVD) of the transformed matrix X� or
X�. As shown in Figure 12.4, the transformed m � n matrix may be thought of
as m vectors plotted in n dimensional space. Each variable is represented as one
of n orthogonal axes of a cartesian coordinate system. There are, however, an
infinite number of sets of n mutually orthogonal basis vectors that may equiva-
lently be used to plot the sample vectors, without loss of information. The
eigenvectors extracted from a similarity matrix of the original data is one such
alternative reference space. The number of eigenvectors (i.e., the number of
principal components) will equal m or n, whichever is smaller. However, there
are usually correlations between analytes due to common sources. Thus, a 
relatively small subset of the eigenvectors is typically sufficient to capture the
variability in the system, and the interrelationships between samples can be
observed without loss of information.

Eigenvector decomposition is a well-established part of the core knowledge of
mathematics and is frequently used in the physical and natural sciences. The cal-
culation of eigenvectors and eigenvalues is relatively straightforward, but lengthy
and cumbersome. As such, a conceptual discussion of the topic is presented
below, and the reader is referred to any number of elementary linear algebra
texts for a complete mathematical discussion. Davis (1986) provides a detailed,
lucid but less rigorous treatment, using examples from the earth sciences.

Given an error free, noise free matrix of m � k samples and n � k variables,
resulting from k sources, only k nonzero eigenvectors and eigenvalues will be
extracted. If k � 3, the first eigenvector will account for a high percentage of
the total variance in the data set. The second eigenvector is constrained in that
it must be mutually orthogonal to the first, and accounts for the highest per-
centage of residual variance (that variance not accounted for by the first eigen-
vector). The third eigenvector is mutually orthogonal to the first two, and
accounts for the remainder of the variance. The data set may equivalently be
expressed in this three-dimensional reference space, without loss of informa-
tion. Given a transformed matrix X� composed of m samples along the rows,
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and n variables (chemical analytes) along columns, PCA is accomplished
through SVD of X�:

(12.7)

where U equals the matrix of principal components scores in R mode, Vt equals
the matrix of scores in Q mode, and �� equals the diagonal matrix of eigenvalues.
Principal component scores (F) and loadings (A) matrices for R and Q modes
may result by re-expression of Equation 12.7, as indicated (Zhou et al., 1983).
Eigenvectors are abstract in that they usually cannot be interpreted in terms of
real world phenomena (although many have tried). The total number of calcu-
lated PCs equals m or n, whichever is smaller. A model involving a reduced num-
ber of principal components (k) may be represented as follows (Q mode):

Matrix dimensions (12.8)

where k equals the number of PCs retained for the model, and � represents error.

12.2.4 DETERMINING THE NUMBER OF SIGNIFICANT PRINCIPAL
COMPONENTS

The choice of the number k is equivalent to the decision on the number of ‘sig-
nificant’ principal components. Of the many aspects of PCA-based methods,
no topic has created more argument or controversy than the criteria used to
determine the correct number of eigenvectors (i.e., k, the number of factors,
sources, subpopulations or end-members).

Numerous methods have been proposed for determination of k (Cattell,
1966; Exner, 1966; Malinowski, 1977; Miesch, 1976a; Wold, 1978; Ehrlich and
Full, 1987; Henry et al., 1999). The spirit and intent of these methods are sim-
ilar: the estimated data set, as back-calculated from reduced dimensional space
(i.e., Xhat or ), should reproduce the measured data (X) with reasonable
fidelity.

12.2.4.1 Single Index Methods 
Six criteria commonly used in environmental chemometrics were applied to
Data Sets 1 and 2, and the results are shown in Tables 12.4 and 12.5, respectively.

$X 
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The PCA of both data sets involved the constant sum and range transforma-
tions. Each of the six indices, and the rationale for their use, is discussed below.

1 Cumulative percentage variance. The rationale for this criterion is simple: a reduced

dimensional model should account for a large percentage of the variance in the

original matrix. However, as discussed in Section 12.2.1, any a priori choice  regarding

what percentage of variance one should consider to be ‘significant’ is problematic.

Workers in multivariate statistics, chemometrics and mathematical geology generally

acknowledge that any proposed cutoff criterion is arbitrary (Malinowski, 1991; Deane,

1992; Reyment and Jöreskog, 1993). The lack of a clear criterion makes the

cumulative variance method dubious. Nonetheless, in Tables 12.4 and 12.5, we note

that the commonly used cutoff of 95% suggests retention of three principal

components for both Data Sets 1 and 2.

2 Scree test. The scree test of Cattell (1966) is based on the supposition that the residual

variance, not accounted for by a k principal component model, should level off at the

point where the principal components begin accounting for random error. When

residual variance is plotted versus principal component number, the point where the

curve begins to level off should show a noticeable inflection point, or ‘knee’. The

problem with this criterion is that there is often no unambiguous inflection point,

and when such is the case, the decision as to the number of significant principal

components is arbitrary.

3 Normalized varimax loadings. The multivariate statistical algorithms of Klovan and

Miesch (1976) included a subroutine that calculates the number of samples with

normalized varimax loadings greater than 0.100. Neither Miesch (1976a,b) nor 

Klovan and Miesch (1976) included explicit discussion of its utility, but Ehrlich and

Full (1987) later presented such a discussion. If an eigenvector carries systematic

information, then typically, a large number of samples will have high loadings

(loadings in Q -mode terminology). High numbered factors that account for noise

and little variance typically have loadings that are small for all samples (i.e., 
0.1).

Factors with many samples �0.1 indicate principal components that should be

retained for a model. This criterion calls for rotation of principal components using

the varimax procedure of Kaiser (1958), normalization of the varimax loadings

matrix to sum to 1.0 across all sample rows, and tabulation of the number of samples

that exceed 0.1 for each factor. The analyst looks for a sharp drop in the index as an

indication of the appropriate number of eigenvectors.

4 Malinowski indicator function. Malinowski (1977) presented an indicator function,

which is calculated as a function of the residual standard deviation (Malinowski, 1977;

Hopke, 1989). The function reaches a minimum when the ‘correct’ number 

of principal components are retained. The index has worked well with relatively

simple data structures but Hopke (1989) reports that it has not proven as successful

with complex environmental chemical data.
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5 Cross-validation. Cross-validation is a commonly used method for determination of

number of significant principal components. It involves successive deletion of data

points, followed by prediction of the deleted data with increasing numbers of

eigenvectors. The PRESS statistic (predicted residual error sum of squares) is then

calculated for each number of potential eigenvectors. Many criteria have been

proposed based on calculation of some function of PRESS (Wold, 1978; Eastman 

and Krzanowski, 1982; Deane, 1992; Grung and Kvalheim, 1994). The PRESS 

value and criterion in Table 12.3 is that presented by Deane (1992).

6 Signal-to-noise ratio. This method has been proposed very recently by Henry et al.

(1999). Henry’s NUMFACT criterion involves calculation of a signal-to-noise (S/N)

ratio. Henry found that given random data, an S/N ratio as high as 2.0 could be

obtained. Based on that, the rule-of-thumb criterion recommended by Henry is that

principal components with S/N ratios greater than 2.0 should be retained for a model.

As is evident in Table 12.4, for Data Set 1 (a relatively simple data set with 
random Gaussian noise) each of these indices provides an accurate estimate of
the true number of Aroclor sources. All six indices correctly indicate a three-
component system. Table 12.5 reports the values for the same indices, as
applied to the more complicated, error-laden Data Set 2. Here, the reproduc-
tion indices suggest anywhere between three sources and six sources. Clearly,
the complications present in Data Set 2 (which are quite reasonable in terms
of common environmental chemistry scenarios) are sufficient to introduce
ambiguity between these various indices.

This ambiguity is due in part to the fact that all of the above methods are
‘single-index’ methods. Each involves calculation of a single numerical value or
statistic, which represents the data set as a whole as a function of the number
of principal components retained. The data analyst typically compares the
behavior of the index as additional PCs are retained, relative to some rule-of-
thumb cutoff criterion. The idea of a rule-of-thumb decision criterion (i.e., a
minimum, a change in slope, a threshold) is troublesome in exploratory data
analysis, because we have very little information to evaluate the efficacy of these
rules. In such situations, we need other tools to gain deeper insight into the
chemical system.

12.2.4.2 Variable-by-Variable Goodness of Fit
Miesch (1976) noted and addressed some of these problems. Miesch correctly
observed that single index methods (in particular criteria based on percentage
of variance) are misleading because they carry the tacit assumption that vari-
ability not accounted for by a reduced dimensional model is spread evenly
across all originally measured variables. Miesch proposed instead, that good-
ness of fit be evaluated on a variable-by-variable basis. The variance accounted
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for by each of the originally measured variables is evaluated for each potential
number of principal components. Given an m sample by n variable data matrix
X of rank m or n (whichever is smaller) the index used by Miesch (1976) was
the ‘coefficient of determination’ (CD) between each variable in the original
data matrix (X), and its back-calculated reduced dimensional equivalent ( ).
For each number of potential eigenvectors, 1, 2 … rank, Miesch calculated an
n � 1 vector:

(12.9)

where s(x)j
2 is the variance of values in the jth column of X, and (dj)2 is the 

variance of residuals between column j of X and column j of . Miesch 
used the ‘�’ in this equation because he recognized that this was not a 
conventional r 2 or coefficient of determination (‘CD’) as defined by least
squares linear regression. It is not the variance accounted for by the least
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1 220.430 57.36 42.64 16 0.000674 NaN 39.32
2 135.150 92.54 7.46 8 0.000315 0.20 35.04
3 19.212 97.53 2.47 16 0.000204 0.43 12.35
4 1.198 97.85 2.15 1 0.000215 1.26 1.59
5 0.990 98.10 1.90 1 0.000229 1.41 1.35
6 0.861 98.33 1.67 0 0.000246 1.57 1.37
7 0.781 98.53 1.47 1 0.000266 1.76 1.41
8 0.719 98.72 1.28 1 0.000290 1.96 1.29
9 0.634 98.88 1.12 1 0.000318 2.19 1.34

10 0.556 99.03 0.97 0 0.000352 2.50 1.18
11 0.535 99.17 0.83 1 0.000392 2.79 1.27
12 0.475 99.29 0.71 1 0.000442 3.22 1.17
13 0.438 99.41 0.59 1 0.000503 3.67 1.21
14 0.382 99.50 0.50 1 0.000583 4.35 1.03
15 0.371 99.60 0.40 1 0.000681 5.00 1.15
16 0.317 99.68 0.32 1 0.000814 6.01 1.04
17 0.272 99.75 0.25 0 0.001001 7.11 1.09
18 0.213 99.81 0.19 1 0.001296 8.86 0.81
19 0.184 99.86 0.14 0 0.001769 11.31 0.81
20 0.169 99.90 0.10 0 0.002569 14.73 0.83
21 0.143 99.94 0.06 0 0.004157 21.04 0.84
22 0.126 99.97 0.03 1 0.007798 30.60 0.84
23 0.066 99.99 0.01 0 0.027834 308.49 0.64
24 0.043 100.00 0.00 0 NaN 0.00

(1) (2) (3) (4) (5) (6)
PC No. Eigenvalue Cumulative Scree Normalized Malinowski Cross Signal to

Percentage Test Varimax Indicator Validation Noise
Variance Loadings Function PRESS(i)/ Ratio

RSS(i��1)

Table 12.4

Reproduction indices for Data Set 1 (see Table 12.2).
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1 585.600 77.92 22.08 50 0.000102 – 73.29
2 115.450 93.28 6.72 47 0.000059 0.33 31.89
3 17.807 95.65 4.35 18 0.000050 0.73 10.79
4 8.494 96.78 3.22 2 0.000046 0.97 6.54
5 4.751 97.41 2.59 1 0.000043 1.21 4.38
6 3.073 97.82 2.18 2 0.0000421 1.38 3.30
7 1.706 98.05 1.95 2 0.0000422 1.62 1.88
8 1.507 98.25 1.75 1 0.0000424 1.75 1.88
9 1.279 98.42 1.58 1 0.000043 1.88 1.85

10 1.055 98.56 1.44 0 0.000043 2.04 1.49
11 0.973 98.69 1.31 1 0.000044 2.19 1.60
12 0.898 98.81 1.19 1 0.000045 2.33 1.53
13 0.806 98.92 1.08 1 0.000046 2.54 1.51
14 0.782 99.02 0.98 1 0.000047 2.66 1.45
15 0.693 99.11 0.89 1 0.000048 2.81 1.31
16 0.596 99.19 0.81 1 0.000049 3.06 1.25
17 0.570 99.27 0.73 0 0.000050 3.29 1.28
18 0.532 99.34 0.66 1 0.000051 3.57 1.21
19 0.483 99.40 0.60 1 0.000053 3.83 1.16
20 0.434 99.46 0.54 1 0.000055 4.21 1.10
21 0.421 99.52 0.48 1 0.000056 4.52 1.14
22 0.371 99.57 0.43 0 0.000058 5.03 1.10
23 0.364 99.61 0.39 0 0.000060 5.25 1.10
24 0.313 99.66 0.34 0 0.000062 5.72 0.95
25 0.287 99.69 0.31 0 0.000065 6.33 0.94
26 0.274 99.73 0.27 0 0.000067 6.82 1.00
27 0.246 99.76 0.24 0 0.000070 7.74 0.93
28 0.245 99.80 0.20 0 0.000073 8.24 0.94
29 0.215 99.82 0.18 1 0.000076 8.89 0.88
30 0.178 99.85 0.15 0 0.000080 10.12 0.76
31 0.160 99.87 0.13 0 0.000084 11.25 0.72
32 0.142 99.89 0.11 1 0.000089 12.08 0.67
33 0.122 99.90 0.10 1 0.000095 13.78 0.62
34 0.111 99.92 0.08 0 0.000102 16.02 0.61
35 0.105 99.93 0.07 1 0.000109 18.24 0.58
36 0.093 99.95 0.05 0 0.000117 21.61 0.60
37 0.084 99.96 0.04 0 0.000125 22.87 0.54
38 0.060 99.96 0.04 0 0.000138 28.54 0.45
39 0.057 99.97 0.03 0 0.000152 32.49 0.44
40 0.047 99.98 0.02 0 0.000170 39.18 0.41
41 0.040 99.98 0.02 1 0.000191 46.38 0.40
42 0.031 99.99 0.01 0 0.000221 58.76 0.35
43 0.026 99.99 0.01 0 0.000260 73.10 0.32
44 0.020 99.99 0.01 0 0.000317 99.11 0.28
45 0.016 100.00 0.00 0 0.000396 140.67 0.26
46 0.014 100.00 0.00 0 0.000479 172.73 0.26
47 0.007 100.00 0.00 0 0.000697 317.28 0.19
48 0.003 100.00 0.00 0 0.001372 555.71 0.13
49 0.002 100.00 0.00 0 0.005275 – 0.12
50 0.002 100.00 0.00 0 – – 0.00

(1) (2) (3) (4) (5) (6)
PC No. Eigenvalue Cumulative Scree Normalized Malinowski Cross Signal to

Percentage Test Varimax Indicator Validation Noise
Variance Loadings Function PRESS(i)/ Ratio

RSS(i��1)

Table 12.5

Reproduction indices for Data Set 2 (see Table 12.3).
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squares regression line of Xj and j. Rather, the Miesch CD is the r 2

with respect to a line of one-to-one back-calculation between Xj and

j. For CDs less than 1.0, the analyst must make some decision as to what value
may be accepted. That decision is made in context of the analyst’s experience,
knowledge of measurement error (if available), and scientific context. As an
example, if a certain PCB congener is known to be less accurate and precise
using a certain gas chromatography (GC) column, the analyst may justifiably
accept a lower CD for that congener, than for other congeners.

A graphical extension of Miesch’s method has recently been implemented
by Johnson, the CD scatter plot ( Johnson, 1997; Johnson et al., 2000). The
appropriate graphic to illustrate the fit of the Miesch CD is a series of n scatter
plots that show the measured value for each variable Xj plotted against 
the back-calculated values from the k proposed principal components ( j). 
A scatter plot series for Data Set 2 is presented as Figure 12.5.

The scatter plot array shows 56 plots (one for each PCB congener) as back-
calculated from a three-PC model. The Miesch CD is calculated and reported
at the top left corner of each graph. When an insufficient number of principal
components are retained there should be evident non-random deviations from
the 1:1 fit line. For three principal components a good fit is observed for most
congeners, but there is a systematic lack of fit observed for (1) non-detect 
censored data points (indicated as squares); (2) Sample 22 which had a data
transcription error (triangle); and (3) the congener PCB 141, which coelutes
with DDT. In particular, note that on many graphs, there are two ‘non-detect’
samples at high measured concentration. These are Samples 9 and 17 from
Table 12.3. Both of these samples had low total PCB concentrations, and
yielded non-detects for more than half of the reported PCB congeners.

The important point with regard to determining the number of significant
principal components is that these errors, while not related to chemical
sources fingerprints, are not random. Rather, they represent systematic signal
within the data set, and thus they greatly influence indices shown in Tables
12.4–12.6.

The strength of CD scatter plots is that it allows rapid evaluation of (1) 
sample-by-sample goodness of fit, (2) variable-by-variable goodness of fit, and
(3) outlier detection. Each of these is evaluated simultaneously, as a function
of the number of principal components retained. That combination quickly
leads the analyst to more insightful and direct questions than are possible
based solely on what threshold numerical index one judges acceptable. The
questions that we must now ask are:

1 What is the cause of deviation from good fit? Is it random error or systematic

variability not accounted for by k PCs?

$X 

$X 

$X 

P R I N C I PA L  C O M P O N E N T S  A N A L Y S I S  A N D  R E C E P T O R  M O D E L S 491

chap-12.qxd  6/13/01  8:11 PM  Page 491

Case 4:05-cv-00329-GKF-PJC     Document 2252-3 Filed in USDC ND/OK on 06/19/2009     Page 31 of 56



I N T R O D U C T I O N  T O  E N V I R O N M E N TA L  F O R E N S I C S492

M
ea

su
re

d 
C

on
ge

ne
r 

V
al

ue
s 

(P
er

ce
nt

)

Back-Calculated Values (%) from 3 PC Model

Fi
gu

re
 1

2.
5a

G
oo

dn
es

s-o
f-f

it 
sc

at
te

r 
pl

ot
 a

rr
ay

 a
nd

 M
ie

sc
h 

co
ef

fic
ie

nt
s 

of
 d

et
er

m
in

at
io

n 
(C

D
s)

 fo
r 

fir
st

 3
0 

va
ri

ab
le

s 
in

 D
at

a 
Se

t 2
.  

T
he

 x
ax

is
 is

 m
ea

su
re

d 
co

nc
en

tr
at

io
n.

 T
he

 y
ax

is
 is

 th
e 

va
lu

e
ba

ck
-c

al
cu

la
te

d 
fr

om
 a

 th
re

e 
pr

in
ci

pa
l c

om
po

ne
nt

 m
od

el
. N

on
-d

et
ec

ts
 (

ce
ns

or
ed

 d
at

a 
po

in
ts

) 
ar

e 
in

di
ca

te
d 

as
 s

qu
ar

es
 (

��
).

 S
am

pl
e 

22
, w

hi
ch

 h
ad

 a
 d

at
a 

tr
an

sc
ri

pt
io

n 
er

ro
r, 

is
 

in
di

ca
te

d 
as

 a
 tr

ia
ng

le
 (

��
).

chap-12.qxd  6/13/01  8:11 PM  Page 492

Case 4:05-cv-00329-GKF-PJC     Document 2252-3 Filed in USDC ND/OK on 06/19/2009     Page 32 of 56



P R I N C I PA L  C O M P O N E N T S  A N A L Y S I S  A N D  R E C E P T O R  M O D E L S 493

M
ea

su
re

d 
C

on
ge

ne
r 

V
al

ue
s 

(P
er

ce
nt

)

Back-Calculated Values (%) from 3 PC Model

Fi
gu

re
 1

2.
5b

G
oo

dn
es

s-o
f-f

it 
sc

at
te

r 
pl

ot
 a

rr
ay

 a
nd

 M
ie

sc
h 

co
ef

fic
ie

nt
s 

of
 d

et
er

m
in

at
io

n 
fo

r 
la

st
 2

6 
va

ri
ab

le
s 

in
 D

at
a 

Se
t 2

. T
he

 x
ax

is
 is

 m
ea

su
re

d 
co

nc
en

tr
at

io
n.

 T
he

 y
ax

is
 is

 th
e 

va
lu

e 
ba

ck
-

ca
lc

ul
at

ed
 fr

om
 a

 th
re

e 
pr

in
ci

pa
l c

om
po

ne
nt

 m
od

el
. N

on
-d

et
ec

ts
 (

ce
ns

or
ed

 d
at

a 
po

in
ts

) 
ar

e 
in

di
ca

te
d 

as
 s

qu
ar

es
 (

��
).

 S
am

pl
e 

22
, w

hi
ch

 h
ad

 a
 d

at
a 

tr
an

sc
ri

pt
io

n 
er

ro
r, 

is
 in

di
ca

te
d 

as
 a

 tr
ia

ng
le

 (
��

).
 N

ot
e 

la
ck

 o
f f

it 
fo

r 
PC

B
 1

41
 d

ue
 to

 D
D

T
 c

oe
lu

tio
n.

chap-12.qxd  6/13/01  8:11 PM  Page 493

Case 4:05-cv-00329-GKF-PJC     Document 2252-3 Filed in USDC ND/OK on 06/19/2009     Page 33 of 56



2 If the cause of the observed deviation is systematic, is it due to (1) data entry error, 

(2) analytical error, or (3) presence of an additional source of variability in the field?

3 How does one evaluate the number of significant PCs in the presence of such

deviations?

In most cases, these questions cannot be answered in the realm of numerical
data analysis. The analyst must now change hats and play the role of forensic
scientist. The decision regarding how to deal with outlier samples must be con-
sidered in full context of the investigation: geographic/temporal distribution,
analytical error, data entry error, method detection limits, as well as the possi-
bility of an additional source, present in only one or a few samples. As discussed
earlier, in environmental forensics investigations, decisions of ‘significance’ are
often best made in the scientific context of the investigation, rather than
through use of a rule-of-thumb numerical criteria. The use of such diagnostic
plots is not new. They are standard in evaluation of linear regression models
(Draper and Smith, 1981) but unfortunately are seldom used in evaluation of
principal components models.

In the case of Data Set 2, the decision made by the data analyst is different
for each type of outlier:

1 In the case of PCB 141 coeluting with DDT, the appropriate decision is to have 

the chemist go back and reanalyze the chromatograms to ensure that PCB 141 

(a shoulder on the DDT peak) is correctly quantified.

2 In the case of the data transcription error, the appropriate decision is to correct the

error in the spreadsheet, and rerun the analysis.

3 In the case of the two low concentration samples with multiple censored data points,

usually the only realistic solution is to remove those two samples from the data set.

4 In the case of the remaining censored data points, those non-detects are generally at

the low end of the measured range, and thus do not adversely affect the accuracy of

back-calculation. We usually wish to retain as many samples as possible in the analysis.

Therefore, in this case, we would typically leave these remaining non-detect samples

in the matrix.

The changes above were made to Data Set 2. The PCA was rerun, and the
revised reproduction indices are shown in Table 12.6. As for the much simpler
Data Set 1, these indices are now in general agreement with each other, 
correctly indicating the presence of a three-component system.

12.2.5 PCA OUTPUT

As discussed in Section 12.2.1, the most common way of presenting PCA results
is in terms of a PCA scores plot, where the analyst can evaluate relationships
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01 561.330 76.26 23.74 46 0.000117 – 38.27
02 135.180 94.63 5.37 44 0.000059 0.25 14.83
03 19.919 97.34 2.66 22 0.000044 0.57 2.55
04 2.191 97.63 2.37 2 0.0000434 1.09 1.87
05 1.642 97.86 2.14 1 0.0000438 1.18 1.90
06 1.416 98.05 1.95 1 0.0000443 1.27 2.14
07 1.321 98.23 1.77 0 0.0000448 1.31 1.98
08 1.147 98.38 1.62 0 0.000046 1.40 1.76
09 1.025 98.52 1.48 1 0.000046 1.50 1.85
10 0.905 98.65 1.35 1 0.000047 1.61 1.59
11 0.839 98.76 1.24 1 0.000048 1.75 1.67
12 0.819 98.87 1.13 0 0.000050 1.77 1.58
13 0.712 98.97 1.03 0 0.000051 1.89 1.54
14 0.656 99.06 0.94 0 0.000052 2.02 1.54
15 0.612 99.14 0.86 1 0.000054 2.16 1.35
16 0.561 99.22 0.78 1 0.000055 2.31 1.37
17 0.511 99.29 0.71 1 0.000057 2.50 1.39
18 0.489 99.35 0.65 1 0.000059 2.74 1.30
19 0.482 99.42 0.58 1 0.000061 2.92 1.30
20 0.439 99.48 0.52 1 0.000063 3.13 1.31
21 0.412 99.53 0.47 0 0.000065 3.26 1.22
22 0.357 99.58 0.42 0 0.000068 3.60 1.16
23 0.339 99.63 0.37 1 0.000071 3.90 1.18
24 0.315 99.67 0.33 0 0.000074 4.15 1.07
25 0.276 99.71 0.29 0 0.000077 4.67 1.10
26 0.269 99.75 0.25 0 0.000081 4.83 0.94
27 0.227 99.78 0.22 0 0.000085 5.47 0.96
28 0.218 99.81 0.19 0 0.000089 6.03 0.89
29 0.199 99.83 0.17 1 0.000094 6.26 0.81
30 0.162 99.86 0.14 0 0.000101 7.05 0.77
31 0.148 99.88 0.12 1 0.000108 7.67 0.71
32 0.129 99.89 0.11 1 0.000116 8.79 0.71
33 0.119 99.91 0.09 1 0.000126 10.20 0.73
34 0.117 99.93 0.07 0 0.000136 11.61 0.68
35 0.106 99.94 0.06 0 0.000147 12.95 0.64
36 0.086 99.95 0.05 0 0.000162 15.57 0.59
37 0.079 99.96 0.04 0 0.000178 15.72 0.45
38 0.053 99.97 0.03 0 0.000204 19.88 0.46
39 0.050 99.98 0.02 0 0.000236 22.65 0.41
40 0.041 99.98 0.02 0 0.000279 28.45 0.40
41 0.037 99.99 0.01 0 0.000335 36.13 0.40
42 0.035 99.99 0.01 1 0.000403 40.03 0.31
43 0.020 99.99 0.01 0 0.000538 59.53 0.30
44 0.019 100.00 0.00 0 0.000740 74.99 0.26
45 0.013 100.00 0.00 0 0.001170 118.92 0.26
46 0.011 100.00 0.00 0 0.002074 175.26 0.19
47 0.006 100.00 0.00 0 0.006138 – 0.13
48 0.002 100.00 0.00 0 – – 0.00

(1) (2) (3) (4) (5) (6)
PC No. Eigenvalue Cumulative Scree Normalized Malinowski Cross Signal to

Percentage Test Varimax Indicator Validation Noise
Variance Loadings Function PRESS(i)/ Ratio

RSS(i��1)

Table 12.6

Reproduction indices for modified Data Set 2. For correctable errors (DDT coelution with PCB 141 and data transcription error
in Sample 22) the data were modified accordingly. For uncorrectable problems (low concentration samples with many non-detects
in two samples 9 and 17) were removed from the matrix.
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between samples on a two- or three-dimensional graphic. Scores plots for Data
Set 1 were presented as Figures 12.2 and 12.3. For simple, clustered data sets
such as this, the scores-plot visualization method is very effective. The 
problem, however, is that regardless of the complexity of the data or the results
of goodness-of-fit diagnostics (Section 12.2.4) graphical limitations dictate a
maximum of three principal components. This puts subtle pressure on the ana-
lyst to choose, whenever possible, three or fewer components. Therefore, the
widespread occurrence of two and three component plots in the literature may
be due more to this bias than to the inherent simplicity of environmental
chemical systems. Another limitation to PCA scores plots is illustrated in Figure
12.6. This is the three-PC scores plot for cleaned-up Data Set 2. The corners of
the gray shaded triangle represent the locations of the three Aroclor sources.
All Data Set 2 samples plot within a triangle defined by these three vertices.
This data cloud geometry is commonly observed when samples are mixtures of
multiple sources.

Numerous software packages, including most general-purpose packages,
perform PCA and allow the user numerous data transformation and visualiza-
tion options. A few of these include Statistical Analysis System, (SAS: Cary, NC),
Number Cruncher Statistical System (NCSS: Layton, Utah), Pirouette
(Infometrix, Woodinville, WA).

As is evident in Figure 12.6, PCA can be effective in inferring the 
presence of a two- or three-component mixed system, but by itself PCA is 
not capable of determining the chemical compositions of the sources, or their 
relative contributions. In the case of analysis of mixtures, we need 
another technique in our numerical toolbox. Such tools are discussed in
Section 12.3.
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Figure 12.6

Three PC scores plot for
Data Set 2, after errors
have been corrected. No
samples in Data Set 2
(dots) represent pure
Aroclor sources. All are
mixtures of the three
sources. The approximate
locations of pure sources
are indicated at the 
vertices (corners) of the
gray shaded triangle.
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1 2 . 3 S E L F - T R A I N I N G  R E C E P T O R  M O D E L I N G  M E T H O D S

An increasingly common approach in environmental forensic investigations
involves the use of receptor models. These models are designed to resolve
three parameters of concern in a multivariate, mixed chemical system: (1) the
number of components in the mixture, (2) the identity (i.e., chemical compo-
sition or fingerprints) of each component, and (3) the relative proportions of
each component in each sample. These objectives are stated mathematically as
the determination of k, A and F in Equation 12.1. The source apportionment
equation is similar to the scores and loadings expression given in Equations
12.5 and 12.6. However, principal component scores and loadings are abstract,
orthogonal matrices, and do not represent feasible chemical compositions or
source contributions. They are abstract in that when expressed in terms of the
original chemical variables, principal component loadings typically contain
negative elements.

Receptor modeling methods therefore involve rotation of matrices A and F
to an oblique solution derived within reduced (k-dimensional) principal 
component space. The rotation is performed per explicit non-negativity con-
straints imposed on matrices A and F. For example, a fingerprint cannot have
a chemical composition with �10% PCB 138, thus matrix F cannot have 
negative elements. Similarly, a sample cannot have a �35% contribution from
a given source, thus matrix A cannot have negative elements (Miesch, 1976a;
Full et al., 1981, 1982; Gemperline, 1984; Hopke, 1989; Henry and Kim, 1990;
Kim and Henry, 1999). Non-negativity constraints are typical requirements for
all mixing models. In addition, other explicit restrictions may be imposed, if
one has additional knowledge of physical/chemical constraints on the system
(Henry and Kim, 1990; Johnson, 1997; Kim and Henry, 1999).

Multivariate receptor modeling methods use PCA as an intermediate step to
determine the number of contributing sources, and to provide a reduced
dimensional reference space for resolution of the model. In all of the receptor
modeling methods discussed here, determining the number of sources (k)
essentially reduces to the problem of choosing the number of significant 
principal components. As such, discussions regarding determination of signif-
icant principal components (Section 12.2.4) are equally relevant to receptor
modeling.

An assumption of the conceptual mixing model/receptor model is that the
system must be over-determined. That is, the data set must contain more 
variables or samples (whichever number is smaller) than there are sources. If
we measure only four chemicals in each sample, and six sources contribute to
the contamination, we cannot completely or realistically resolve the model.
Another assumption is that of linear mixing. We assume that the relative 
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proportions of variables in each source are fixed, and that source contributions
are linearly additive. That is, as we increase the proportion of a source finger-
print in a sample, the variables that are characteristic of that fingerprint will
increase proportionally (linearly) in that sample.

After the choice of k, (Section 12.2.4) the receptor model then resolves the
chemical compositions of sources (F) and the contributions of the sources in
each of the samples (A). Recall, however, that in environmental forensics 
investigations, we rarely have such a priori knowledge of all sources. If possible,
we would like to derive source patterns directly from analysis of ambient data.
Three such methods have been used in environmental source apportionment
investigations: (1) the DENEG algorithm used in polytopic vector analysis
(PVA) (Full et al., 1981, 1982); (2) the unique vector iteration method used in
target transformation factor analysis (TTFA: Roscoe and Hopke, 1981;
Gemperline, 1984; Hopke, 1989; Malinowski, 1991); and (3) source apportion-
ment by factors with explicit restrictions (SAFER) method, used in extended
self-modeling curve resolution (ESMCR: Henry and Kim, 1990; Henry et al.,
1994; Kim and Henry, 1999).

These three methods are analogous in that (1) they do not require a training
data set; (2) they are PCA based methods; (3) they involve solution of quanti-
tative source apportionment equations by development of oblique solutions in
PCA space; and (4) each involves the use of non-negative constraints.

The full PVA algorithm has not been set out in any single paper. This chapter
provides the opportunity to do so. As such, the mathematics of PVA will be 
discussed in greater detail than the other two methods. TTFA and ESMCR are
presented to provide the reader with an intuitive understanding of how those
algorithms operate. The reader is referred to the original papers for specifics
of those algorithms. Each of these three methods were applied to the PCB data
set given in Table 12.2, and each yielded source compositions that closely
matched the compositions of the Aroclor sources in Table 12.1. While we will
focus on these three methods, it should be noted that there are yet other 
methods with similar objectives, which have been described in the literature
(Ozeki et al., 1995; Xie et al., 1998).

12.3.1 POLYTOPIC VECTOR ANALYSIS (PVA)

PVA was developed for analysis of mixtures in the geological sciences, but it has
evolved over a period of 40 years, with different aspects of the algorithm 
presented in a series of publications, by a number of different authors. The
roots of PVA are in principal components analysis, pattern recognition, linear
algebra, and mathematical geology. Its development in mathematical geology
can be traced back to the early 1960s and John Imbrie, a paleontologist
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(Imbrie, 1963). Following Imbrie’s work, a series of FORTRAN-IV programs
were published (Manson and Imbrie, 1964; Klovan, 1968; Klovan and Imbrie,
1971). The resulting software developed by Imbrie (at Brown University) and
Ed Klovan (at the University of Calgary) was called CABFAC (Calgary and
Brown FAC tor Analysis) and quickly became the most commonly used multi-
variate analysis algorithm in the geosciences. Subsequent investigators that
proved crucial in development of the PVA algorithm included A.T. Miesch and
William Full. Miesch, a geochemist with the US Geological survey in the 1970s,
was one of the first to take full advantage of Imbrie’s oblique vector rotation
methods (Miesch 1976a,b). Miesch also developed the variable-by-variable
goodness-of-fit criteria (Miesch CDs) discussed in Section 12.2.4.2. William
Full, as a PhD candidate at the University of South Carolina in the early 1980s,
developed the DENEG algorithm, which allows end-members (sources) to be
resolved without a priori knowledge of their composition, and without use of a
training data set (Full et al., 1981, 1982).

The name ‘polytopic vector analysis’ follows directly from the jargon of
Imbrie (1963) and Full et al. (1981, 1982). Imbrie (and many others) referred
to eigenvector decomposition models, resolved in terms of orthogonal axes as
‘factor analysis’. Solutions resolved in terms of oblique vectors he termed 
‘vector analysis’. Imbrie’s is not the definition of true factor analysis as defined
by Harman (1960). Regardless, Imbrie’s terminology has held within mathe-
matical geology and a number of other subdisciplines. Because PVA involves
resolution of oblique vectors as source compositions, thus the term vector
analysis. The term ‘polytopic’ is due to the fact that PVA involves resolution of
a k � 1 dimensional solid, a ‘simplex’ or ‘polytope’, within k dimensional 
principal component space. As illustrated in Figure 12.6, the polytope or 
simplex in three-dimensional space is a two-dimensional triangle. In two space
it is a straight line. In four space it is a tetrahedron. Because the objective of
PVA is resolve a k � 1 dimensional simplex, the constant vector length trans-
form is typically employed because it forces all sample vectors to have unit
length, and thus all data are constrained to a k � 1 dimensional space within 
k space (see Figure 12.4 – Section 12.2.2).

This section presents the full PVA algorithm running under default condi-
tions; i.e., (1) the EXTENDED CABFAC algorithm (Klovan and Imbrie, 1971)
and (2) the iterative oblique vector rotation algorithm originally presented 
as EXTENDED QMODEL (Full et al., 1981, 1982). While any number of alter-
native data transformation and calculation options are available and may 
be implemented, these algorithms represent the core of PVA as it is presently
implemented under default options by the commercial version of the
SAW VECA (South Carolina and W ichita Vector Analysis: Residuum Energy,
Inc., Dickinson, TX). SAW VECA performs the dimensionality analysis of the 
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Klovan and Miesch’s EXTENDED CABFAC; along with the CD scatter plot
goodness-of-fit diagnostics of Johnson (1997; Johnson et al., 2000). SAWVECB
is the EXTENDED QMODEL and FUZZY QMODEL algorithms of Full et al.
(1981, 1982). Readers not interested in the formalism of the PVA algorithm
can skip ahead to Section 12.3.1.4.

12.3.1.1 Scaling Functions: Back-Calculation to Original Metric
The transformations presented in Section 2.2.2 serve to optimize the eigen-
vector decomposition, but interpretation and evaluation of matrices A� and F�

in any scientific context is difficult. Calculations are best performed in trans-
form metric, but evaluation/interpretation must be done in measurement 
metric. Thus the results must be back-calculated. Where double prime (e.g. X�)
indicates a matrix which has been transformed in turn by the range transform
and the constant vector length transform, the mapping functions presented by
Miesch (1976a) allow us to translate the equations � � A� F� back to � AF
(percent or ‘constant row-sum’ metric). The mathematics are discussed below.
As scaling is called upon in various portions of PVA, the reader is referred back
to this section for a description. The first step in back-calculation to measure-
ment metric is the definition of what Miesch termed scale factors: sk. Given k
retained eigenvectors, Miesch defines a 1 � k row vector of scale factors s � {sk}
where each element sk is defined as:

(12.10)

K is a constant (the sum of each row: usually 100), f�kj is the element of the
scores matrix, and xmax j and xmin j are the maximum and minimum values in
the jth column of the original data matrix X.

The elements of the back-calculated scores matrices F� and F are then 
calculated, in turn, as follows:

(12.11)

(12.12)

Similarly, the elements of the back-calculated loadings matrices A� and A are
calculated as:
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If r is then defined as a column vector of the m row-sums of A�, the elements 
of A are:

(12.14)

12.3.1.2 Eigenvector Decomposition and Determining the Number of
Sources

A singular value decomposition is carried out on transformed matrix X� or X�

as presented in Equation 12.7. The results are translated into scores and load-
ing (A�Q and F�Q) again, as per Equation 12.7. The scores and loadings matrices
are then translated back to constant sum metric (A and F) using the scaling
functions presented in the preceding section (Equations 12.10 and 12.14). The
task then is determination of k, the appropriate number of sources. As dis-
cussed in Section 12.2.4, this reduces the problem of choosing the number of
significant principal components, and all discussions presented in that section
are equally relevant here. The methods used most often in PVA are (1) the nor-
malized loading criteria (Ehrlich and Full, 1987) and (2) the Miesch CDs and
scatter plots as described in Section 12.2.4.2. For each number of potential
principal components (k � 1, 2, …n, if n is smaller; or k � 1, 2, … m, if m is
smaller), is calculated as:

Matrix dimensions (12.15)

The Miesch CDs are calculated and scatter plots constructed using the reduced
dimensional scores and loadings, as expressed in percentage metric.

12.3.1.3 Determining End-Member Compositions and Mixing Proportions
Following determination of k (the number of end-members) a set of mathe-
matical procedures are used to resolve the second and third objectives of 
the receptor modeling problem: (2) determine the composition of the end-
members, and (3) determine the relative proportions of each end-member in
each sample. This process is termed polytope resolution. The polytope 
resolution phase is typically conducted within k dimensional varimax space, but
can be equivalently performed in unrotated principal component space. The
first k columns of A� are taken, yielding a reduced matrix A� of size m � k.
Because � � A� F�, we may determine matrix F� by the following matrix
regression equation:
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Using the scaling equations in Section 12.3.1.1, matrices A� and F� are then
transformed back to the original constant row-sum metric, and the estimate of

is calculated as:

Matrix dimensions (12.17)

12.3.1.3.1 Selection of Initial Polytope
The first task of the polytope phase is an initial estimate of a polytope. A 
number of techniques have been proposed. Most commonly employed is the
‘extended’ method, so named because it was used by Full et al. (1981) in the
EXTENDED QMODEL Fortran IV algorithm. The formalism of the extended
method is described below. Alternative methods, their advantages and dis-
advantages are subsequently discussed.

The extended method establishes the initial polytope by taking the k most
mutually extreme samples in the data set as vertices (the EXRAWC subroutine
of Klovan and Miesch, 1976). EXRAWC first picks a good candidate set for
these k samples: those with maximum loadings on each of the first k factors of
A�. The columns of A� are scanned, and the maximum absolute value loadings
in each column are identified. The rows (samples) of A� corresponding to the
maximum loadings are then put into a new k � k matrix O0. This operation is
done without duplication (i.e. no two rows of O0 are the same). Clearly, the sam-
ples that make up O0 are candidates for the k most mutually extreme samples.
The PVA algorithm uses these k vectors as oblique reference axes for all samples.
The resultant oblique loadings and scores matrices A�0 and F�0 are calculated as:

(12.18)

(12.19)

Matrices F�0 and A�0 are then scaled back to measurement space using the scal-
ing functions described in Section 2.2.4, yielding F0 and A0.

Matrix A0 is then inspected to determine if the k samples in O0 are indeed
the k most mutually extreme. Following the method of Imbrie (1963) and
Miesch (1976a), if the maximum loadings in matrix A0 equal 1.0 and corres-
pond to the samples taken for matrix O0, then the k most mutually extreme
samples have been taken and matrix O0 is then used as initial oblique refer-
ence axis for iterative model resolution. If loadings greater than 1.0 are identi-
fied in A0, the sample(s) corresponding to that maximum loading replaces the
original sample in O0, and the process is repeated until a suitable set of k sam-
ples is obtained. If the algorithm finds no set of samples with all elements less 
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than 1.0, then the original matrix O0 is taken as the initial set of oblique 
vectors. The algorithm for determining extreme samples is termed the
EXRAWC procedure.

Outlier samples related to analytical problems or human error should be cor-
rected or omitted from the analysis, as discussed in Section 12.2.4. However, if
such errors are not corrected, the extended method can perform poorly.
Outliers are extreme samples, and the extended method defines the initial poly-
tope using extreme samples as vertices. In such cases, another method based on
the fuzzy c means clustering algorithm of Bezdek (Bezdek, 1981; Bezdek et al.,
1984) will often produce better results. The mathematics of so-called FUZZY
QMODEL are presented by Full et al. (1982) demonstrated that the k fuzzy clus-
ter centers as defined in k dimensional eigenspace were always well within the
convex hull defined by the sample data cloud, and were minimally affected by
the presence of outliers. The vectors that define the k fuzzy cluster centers are
taken as the row vectors of O0, and matrices A0 and F0 are defined relative to
these vectors, as discussed above. The main disadvantage of the fuzzy method is
that it is more computationally expensive to run. In the absence of outliers due
to error (as we hope would result from diligent outlier identification in the PCA
step) no advantage is gained by choosing fuzzy over extended.

A third option is to use the samples with maximum loadings in A�. In
instances where the EXRAWC subroutine does not converge, the EXTENDED
option will default to the set of samples with maximum loadings.

A final option is external input of end-member compositions. If end-
member compositions are known or suspected prior to the analysis, those 
suspected sample compositions may be plugged into the model as potential
end-members. Suppose for instance that Aroclors 1248, and the two 1254 
variants were suspected as the contributing sources for Data Set 2. If those
source compositions were used as external end-members, and the model con-
verged without iteration, the tested end-members would be considered feasible.
This method is essentially the same as target testing as described by Hopke
(1989) and Malinowski (1991) and is also similar to methods that require use
of a training data set (such as chemical mass balance approaches). While this
option is included in PVA software, in practice it is seldom used, because it con-
stitutes a tacit hypothesis test, which is contrary to an exploratory data analysis
philosophy. Regardless of the method used, the result is ultimately a set of k
vectors as the rows of matrix O0. Matrices A0 and F0 are then defined relative
to these vectors.

12.3.1.3.2 Testing Matrices A0 and F0 for Negative Values
Once an initial polytope is defined, the algorithm scans matrices A0 and F0 for
negative values. The DENEG subroutine described below distinguishes
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between adjustable negative values and nonadjustable negative values, based
on three user-defined numerical criteria. The first, t1, is the ‘mixing propor-
tions cutoff criterion’. The default t1 is �0.05. In other words, the algorithm
will allow up to a �5% mixing proportion in any sample. The purpose of t1 is
to allow for some noise in the model.

If A0 does contain negative matrix elements less than t1, the matrix is again
scanned using a second criterion, t2, referred to as the DENEG value. The
default DENEG value is �0.25, but may be modified as the user sees fit. The
DENEG subroutine recognizes adjustable mixing proportions only if they fall
in the range between t1 and t2. At first glance, the need for the t2 is not obvi-
ous, but in effect, it serves as our final line of defense against outliers. In early
development of the algorithm, Full observed that in the presence of outliers, a
model would often converge (i.e., no negatives less than �0.05) with the lone
exception of an outlier with an extremely high negative value (less
than �25%) in matrix A. By using the t2 criterion, the DENEG subroutine
would not iterate in an attempt to fit that single sample into the model.

Finally, the algorithm scans F0 for negative values using a third criteria, t3,
referred to as the ‘end-member composition cutoff criterion’. Again, the
default t3 value is �5%, and serves the purpose of allowing some noise in 
the model. If there are no adjustable negative elements in matrices A0 and F0,
the algorithm stops. A0 is taken as the mixing proportions matrix and F0 as the
end-member compositions matrix.

12.3.1.3.3 The DENEG Algorithm
If A0 and F0 contain adjustable negatives, the program starts an iterative
process of expansion and rotation of the polytope until two criteria are met:
(1) mixing proportions have no adjustable negative values, and (2) end-member
compositions have no adjustable negative values.

Geometrically the DENEG procedure is a process of alternate polytope
expansion and rotation. The results of DENEG applied to the synthetic three-
source PCB data set are shown graphically in Figure 12.7. Recall that data trans-
formations are performed such that each sample vector has unit length (be
that in measurement space or reduced dimensional principal components
space). Thus, all data points plot on sphere, unit length from the origin
(Figure 12.7). This feature of the data holds in reduced dimensional space;
thus, all data vectors in three-dimensional PC space would also have unit length
(Figure 12.7). DENEG begins by constructing an initial simplex in principal
component space (Iteration 0: Figure 12.7). The EXTENDED method
(Section 12.3.1.3.1) was used to define the initial polytope (Iteration 0), so the
vertices of the Iteration 0 triangle are located at the three most mutually
extreme samples in the data set. Had pure end-members been contained
within the data set, the non-negativity criteria would have been met at Iteration
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0, and the algorithm would have converged without iteration. However, this
was not the case. Negatives are present in A0 (i.e., samples are located outside
the Iteration 0 simplex: Figure 12.7). Thus DENEG begins a series of iterations
which alternately adjusts A and F until neither matrix contains negative values.
The DENEG algorithm converged after one iteration, and the Iteration 1 
simplex is shown in Figure 12.7 as the shaded triangle. The associated matrix
operations are described below.

We begin by defining a 1 � k row vector D � whose elements di (i � 1, 2, …
k) are the lowest adjustable mixing proportions in columns 1, 2, … k of matrix
A0. We also define a scalar z :

(12.20)

A new matrix A1 � may then be calculated as:

(12.21)

The resultant matrix A1 represents an end-member mixing proportions matrix,
with no samples composed of negative mixing proportions. Geometrically,
Equation 12.21 has the effect of moving the edges of the polytope out in an
edge parallel direction, and stopping at the outermost sample from that edge:
an edge parallel expansion. The corresponding matrix F1 is then calculated by
matrix regression as

(12.22)

Matrix F1 is the end-member compositions matrix. The algorithm scans F1 for
adjustable negatives (less than t3). If none are encountered, the algorithm
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End-Member 1
Aroclor 1248

End-Member 3
Typical 1254

End-Member 2
Late Production 1254

Iteration 1

Iteration 0

Figure 12.7

Graphical representation
of DENEG algorithm
applied to Data Set 2,
after errors have been 
corrected. In three-PC
space, the algorithm 
establishes a initial sim-
plex with vertices at the
three most mutually
extreme samples in the
data set (Iteration 0),
then alternately expands
and rotates the simplex
until non-negativity 
constraints are met. The
algorithm converged at
Iteration 1.
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ceases iterating, and F1 and A1 are the final mixing proportions and end-
member composition and mixing proportions matrices. If adjustable negatives
are encountered in F1, the algorithm continues to the polytope rotation part
of the algorithm.

If F1 contains adjustable negatives, the algorithm continues by substituting
all negative values of F1 with zeros. A new matrix F2 is then defined by renor-
malizing the rows of the non-negative F1 to sum to 100%. The algorithm scales
F2 using the transforms described in a previous section. Matrix F�2 is then taken
as a prospective end-member compositions matrix. F2 is scaled to transform
space, and is projected down into k dimensional space as a new set of factor
loadings: matrix O2. Oblique loadings matrix is then defined as:

(12.23)

(12.24)

We then scale matrices A�2 back to measurement space using the scaling func-
tions described in Section 12.3.1.1 , yielding A2. Matrix A2 is then inspected for
adjustable negatives. If none are encountered, the program ceases iterating. 
If adjustable negatives are encountered in A2, the iterations continue. The
algorithm redefines matrices A2 and F2 as A0 and F0 and DENEG loops back 
to the beginning. In the event that iterations do not result in non-negative
matrices, two additional cut-off criteria are defined. Criterion t4 is a measure 
of how similar one iteration is to the next. Criterion t5 is the user-defined 
maximum number of iterations.

12.3.1.4 Results of PVA Applied to Data Set 2
PVA was run on Data Set 2, modified as indicated in Section 12.2.4.2. Using
Miesch’s scaling functions (Section 12.3.1.1) the vertices of the Iteration 1 
triangle (Figure 12.7) may be back-calculated to percentage metric, to yield esti-
mates of source compositions (matrix F). The mixing proportions matrix (A) is
also determined by back-calculation to the original percentage metric. The
resolved end-member compositions are illustrated in Figure 12.8. The three pat-
terns resolved by PVA are clearly quite similar to the true Aroclor compositions.

PVA has been applied in a number of multivariate chemical source appor-
tionment investigations, primarily in sediment and water studies (Ehrlich et al.,
1994; Doré et al., 1996; Jarman et al., 1997; Bright et al., 1999; Johnson et al., 2000).

12.3.2 Unique Vector Rotation Method
PVA is one ‘self-training’ method that allows source profiles to be derived in
absence of a priori knowledge of their chemical composition, but other such

′′ ′′A A O2 2� �1

′′ ′′F O F2 2�
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methods have seen considerable application to environmental chemical data.
One of these is target transformation factor analysis (TTFA), which developed
within analytical chemistry/chemometrics rather than mathematical geology/
geochemistry (Roscoe and Hopke, 1981; Gemperline, 1984; Hopke, 1989;
Malinowski, 1991).

In TTFA, the subroutine that allows estimates of source composition in the
absence of known sources is the unique vector rotation method (Roscoe and
Hopke, 1981; Gemperline, 1984; Hopke, 1989; Malinowski, 1991). This
method begins by establishing a n � n matrix where each row vector is 100%
of a single analyte (i.e. ‘unique vectors’). In turn, each of these vectors is itera-
tively rotated within principal component space. For Data Set 2, Figure 12.9
shows the rotation trajectories for each of the 56 unique vectors. Like DENEG,
the method often involves transformation of sample vectors to unit length
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Comparison of true
Aroclor compositions 
(top row) with source 
compositions derived
through PVA (row 2),
TTFA (row 3) and
SAFER (row 4). Congener
numbers correspond to
congener order presented
in Table 12.2.
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(Hopke, 1989). As such, Figure 12.9 illustrates the iterative rotations within the
constant vector length metric. Each of the iteration trajectories is shown as a
curved line on Figure 12.9, which terminates at a location marked (�). The 56
resultant oblique vectors represent a matrix of candidate source profiles for
the receptor model. Three of the candidate profiles (�) were chosen as source
compositions in this example, and the shaded simplex shown is the ternary 
diagram (simplex) constructed based on the chosen profiles.

The unique vector iteration method has proven useful in application in a
number of source apportionment investigations, particularly in air 
receptor modeling (Chang et al.,1988; Hopke, 1989; Borbély-Kiss et al., 1993;
Moro et al., 1997). However, the method can be extremely cumbersome, espe-
cially in a situation such as Data Set 2, where a large number of variables
(n � 56) necessitates evaluation of the feasibility of many permutations of 
candidate source profiles. The TTFA software package FANTASIA (Factor
Analysis to Apportion Sources in Aeresols) is available through Dr Philip
Hopke, Clarkson University, Potsdam, New York. Software for Positive Matrix
Factorization (referenced herein, but not discussed in detail) may also be
obtained through Dr Hopke.

12.3.3 SAFER Method
Another receptor modeling method, SAFER (Source Apportionment by
Factors with Explicit Restrictions) is used in extended self-modeling curve 
resolution (ESMCR: Henry and Kim, 1990; Kim and Henry, 1999). Unlike PVA
and TTFA, ESMCR does not typically involve transformation to unit length. As
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Figure 12.9

Graphical representation
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such Figure 12.10 shows the data projected onto a flat plane perpendicular to
principal component 1. The SAFER method begins by defining the ‘feasible
region’ where the simplex vertices and edges may reside. The inner boundary
of the feasible region is defined by the convex hull of the data cloud (Figure
12.10). The non-negativity constraints on the analytes define the outer bound-
ary of the ‘feasible region’. Each of the lines through the gray shaded region
in Figure 12.10 is the ‘zero line’ for a particular PCB congener, projected into
three-PC space. Any potential source compositions that plots in the gray
shaded region will have a negative composition for at least one analyte.

For a three-component system such as this, a feasible mixing model may be
defined by direct inspection of the data plotted in principal component space,
and manually located within the feasible region (this method is termed
SAFER3D). A method of resolving higher dimensional mixing models has
recently been described (Kim and Henry, 1999). That method calls on the use
of additional explicit physical constraints. Examples of additional constraints
may include (1) total mass of samples, (2) a priori knowledge of a subset of 
contributing sources, (3) upper and lower limits on ranges or ratios of analyte
compositions, or (4) constraints based on laws of chemistry (Kim and Henry,
1999). As was the case for the unique vector iteration method, SAFER has been
applied primarily in source apportionment studies in air (Henry et al., 1994;
Henry et al., 1997). The original ESMCR software package SAFER has recently
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been revised, and will soon be available under the name UNMIX, available
through Dr Ronald C. Henry, West Hills, California. The source compositions
resolved by SAFER3D are shown in Figure 12.8. As for PVA and TTFA, the
resolved source compositions are in good agreement with the true source 
profiles.

1 2 . 4 S U M M A RY

Environmental forensics, by its very nature, involves analysis of complicated
chemical data sets. These data typically contain information for many samples
and with many measured chemicals. By definition, we are working in a multi-
variate, multidimensional world, and we must bring multivariate statistical
methods to bear on these problems. However, the nature of environmental
forensics investigations is such that we usually do not fully understand the systems
under study. Seldom can we or should we apply classical statistical methods
related to formal hypothesis testing. Rather, we must employ multivariate meth-
ods of exploratory data analysis. These methods must have special features: 
(1) they must be able to handle mixtures; (2) the results must be interpretable
in a scientific context; (3) they should minimize a priori assumptions of data dis-
tributions and source chemistry; and (4) they must be able to handle systems
of more than three sources. These conditions greatly limit our choices. The
methods presented in this chapter (PCA and self-training receptor modeling
methods) satisfy these criteria.

All of the methods discussed can produce spurious results when faced with
bad data. A single highly aberrant measurement can significantly disrupt the
variance structure of the data. This is the Achilles heel of multivariate proce-
dures that depend on variance. Thus one of the most crucial steps in the data
analysis process is vigilant outlier detection and data cleaning. PCA and recep-
tor modeling must include systematic and objective procedures for evaluation
of the quality of the data, and this is often best accomplished through the use
of goodness-of-fit scatter plots. Once the data are cleaned, determination of
the number of sources is relatively straightforward. If this step is effectively
done, then the various methods used to determine the number of sources are
usually consistent.

A hierarchy of procedures can then be used to analyze the cleaned data.
PCA, the earliest of the procedures discussed, works best in simple cases, where
there are few sources contributing to the system, and there is limited mixing
between sources. If an initial PCA indicates the presence of mixtures, it usually
best to move to a data analysis method capable of resolving the nature of that
mixture. Three methods have been presented here: PVA, TTFA, and SAFER.
Each of these methods is effective. TTFA’s unique vector iteration method is
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the least attractive of these, because it still requires the user to evaluate a large
number of candidate source profiles for feasibility.

Finally, in our eagerness to apply such methods to environmental chemical
data, and our striving to develop more quantitative and rigorous methods, we
must not lose sight of the chemical and scientific context of our project. Every
time we find a surprise in a data set (which will be quite often, if we are doing
our job correctly) we must relate that information back to the full context of
study. For example, if an outlier is indicated on a scatter plot, we must go back
to the chemist, or to the data entry technician, or to the field-team leader, and
ask what might have caused that sample to be unique. The appropriate data
analysis decision (e.g., deletion, modification, collection of new samples) will
vary, depending on what we learn in those discussions. The data analysis may
bring it to our attention, but questions of cause, source and scientific significance
can rarely be answered in the context of numerical data analysis. More often, we
are better served to consider such questions in the context of industrial history,
chemistry, geology, and biology. We may borrow methods from mathematics and
statistics, but we must remain principally environmental scientists.
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